Designing substations and transformers for bi-directional power flow

Interconnection of transformers in substations that need to accommodate the bi-directional flow of power.

11/27/2012


In early November, on a Consulting-Specifying Engineer webcast, I presented concepts regarding the interconnection of transformers in substations that need to accommodate the bi-directional flow of power. This scenario is typical at large industrial facilities employing co-generation or solar or wind farms with the need to inject large amounts of power into the grid. 

The CSE webcast was titled “What’s New in Electrical Engineering: Smart Grid and Transformers.” (View the webcast here)

Though I’ve covered many of these topics in previous blogs, the webcast allowed me to weave them into a coherent whole, reflected in this two-part blog that provides links to more detail.

Smart Grid involves a lot of technology that’s been in play for many years. What’s different today is the communications element, the information sharing among devices and systems. Smart Grid really is a “system of systems,” which coordinates the flow of information going back and forth for better visualization, data management, simulation and control and cyber security. 


Designing a substation for a transformer that’s going to put power back into the grid is a different kettle of fish, however, in contrast to a traditional load transformer in which the utility feeds power in one direction.

I can recommend that the consulting specifying engineer become familiar with the IEEE C57 family of standards governing equipment aging, protection, design and configurations – all the elements needed for transformers in North America, largely as required by utilities running the grid, particularly in circumstances enabling a bi-directional flow of power.

Apparatus arrangements might include high-side breakers, low-side breakers or both, ground switches, disconnects and protection schemes. The protection scheme is very important. On utility protection and control requirements, the local utility will hand you its detailed needs for your design of the transformer interconnection. Utility crews need tag-out access authorization. Reclosing is an issue that will require resolution between you, your client and the utility.

The utility will also have a prescribed set of requirement for data visualization and control. Set points for volt/VAR support, anti-islanding commands and breaker control of the transformer itself may all be control points that the utility will require for their telemetry of the station. There is even the possibility that the utility will require synchronization control. Metering location figures in substation design, too, and is often dictated by the utility’s requirements. But your client will need access to the meter as well to verify utility bills.

As is often the case, standards provide guidance on many of these issues. The IEEE 1547 series of standards govern interconnections. (Slide 31 in the webcast deck illustrates examples of what’s covered by IEEE 1547.) IEEE 2030 provides a reference model for interoperability of the interconnection. For context here, if you start out with a conceptual reference model such as the ones put out by the National Institute for Science and Technology (NIST) or the International Electrotechnical Commission (IEC), those models speak at a high level. IEEE 2030 offers three different viewpoints of the conceptual reference model, using interoperability architecture perspectives (IAPs): power systems (PS), communications technology (CT) and information technology (IT).

You’ll sometimes find, in talking to a communications engineer, that they don’t really care what information is going back and forth, they just want to know how big a pipe they need to build. On the other hand, the power system engineer doesn’t really care how the data gets from Point A to Point B as long as the data gets transmitted. IEEE 2030 provides an interoperability approach for this, including the transformers and the transformer monitoring. That interoperability allows for a greater degree of success when interconnecting to an electric utility. You’ll find a lot of this documented in IAPs’ Interoperability Tables. Have a look, it’s always better to know these things ahead of time, rather than finding them out later and having to do costly rework.

Regulatory requirements may well come into play in this design scenario. Some states have regulations, such as ownership and control, on generation connected to distribution circuits. The consulting specifying engineer needs to be aware that these regulations change on a state-by-state basis. Fortunately, regulators typically have documents or application guides on these matters. But the consulting specifying engineer needs to look at these issues as they’re designing interconnections with distribution systems.

(For more detail, see my previous blog, “Political and Regulatory Patchwork Governs Interconnection Policies”)

Most of these standards have been adopted in North America and Canada. These are the guiding principles for interconnection and will also address anti-islanding, reclosing and protection schemes that need to be put in place.


Sam Sciacca is an active senior member in the IEEE and the International Electrotechnical Commission (IEC) in the area of utility automation. He has more than 25 years of experience in the domestic and international electrical utility industries. Sciacca serves as the chair of two IEEE working groups that focus on cyber security for electric utilities: the Substations Working Group C1 (P1686) and the Power System Relay Committee Working Group H13 (PC37.240). Sciacca also is president of SCS Consulting.



No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2013 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
The true cost of lubrication: Three keys to consider when evaluating oils; Plant Engineering Lubrication Guide; 11 ways to protect bearing assets; Is lubrication part of your KPIs?
Contract maintenance: 5 ways to keep things humming while keeping an eye on costs; Pneumatic systems; Energy monitoring; The sixth 'S' is safety
Transport your data: Supply chain information critical to operational excellence; High-voltage faults; Portable cooling; Safety automation isn't automatic
Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Plant Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.

Maintaining low data center PUE; Using eco mode in UPS systems; Commissioning electrical and power systems; Exploring dc power distribution alternatives
Synchronizing industrial Ethernet networks; Selecting protocol conversion gateways; Integrating HMIs with PLCs and PACs
Why manufacturers need to see energy in a different light: Current approaches to energy management yield quick savings, but leave plant managers searching for ways of improving on those early gains.

Annual Salary Survey

Participate in the 2013 Salary Survey

In a year when manufacturing continued to lead the economic rebound, it makes sense that plant manager bonuses rebounded. Plant Engineering’s annual Salary Survey shows both wages and bonuses rose in 2012 after a retreat the year before.

Average salary across all job titles for plant floor management rose 3.5% to $95,446, and bonus compensation jumped to $15,162, a 4.2% increase from the 2010 level and double the 2011 total, which showed a sharp drop in bonus.

2012 Salary Survey Analysis

2012 Salary Survey Results

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.