Design patterns and anti-patterns

IT and Engineering Insight: Good software design solves hard problems in a standard way and is well documented and easy to maintain and extend, as opposed to code that seemed reasonable at some time but has spread and become a nightmare to maintain or extend.

09/26/2012


Does a part of your system or part of your code seem to always be broken, or is it so complex that no one wants to work on it because it always breaks? If so, then you may be suffering from the bad habit of anti-patterns. An anti-pattern is the evil twin of a good design pattern. A good design pattern is a reusable requirement, design, or implementation that solves hard problems in a standard way, which is well designed, well documented, easy to maintain, and easy to extend. An anti-pattern is a design pattern that may have seemed reasonable at some time but has spread into many different parts of the system or code and is now a nightmare to maintain or extend.

20% of the code, 80% of the problem

Anti-patterns are often the root cause of the 20% of a system that cause 80% of the problems.

Anti-patterns can show up in requirements, design, or code. In requirements, they are inconsistent or conflicting requirements written in different parts of the requirements specification. Each requirement seems reasonable on its own, but when they are combined they result in overly complex systems to try to resolve the conflicts.

In design, anti-patterns usually arise from copying a pattern that was required in a previous system, such as handling of strings in a PLC or copying files in a PC, but that is no longer needed and adds complexity and reduces performance. A typical anti-pattern involves handling of exceptions. Modern languages contain “catch” and “try” methods to simplify exception handling, but copied patterns from older systems will have deeply nested conditionals that are nearly impossible to debug or change. In addition to error handling, anti-patterns may also be related to security setup, complex data manipulation, and string data manipulation. Anti-patterns show up in code through poor programming techniques. These anti-patterns can be as simple as using single characters for variable names, because “that’s the way we did it in Fortran”;  exceedingly long modules and functions, because “that’s the way we had to do it in Basic”; or byte-at-a-time interfaces, because “the old network only supported one-byte-at-a-time transfers.”

Familiarity, without review

Anti-patterns are really just a bad habit, in which patterns from previous projects are reused without review. They are not reviewed because everyone says, “that’s how we have always done it, so we don’t have to look at that part.”

Anti-patterns may not always be the sign of a poor programming or design techniques; often they are the choice of a bad algorithm. In an analysis of a system with over 1 million lines of code and hundreds of modules in one project, we found that a small percentage of modules were causing the majority of problems, even correcting for the size of the modules. We measured size in several ways: lines of code, number of statements, and number of variables per statement. In all cases the same modules came up as outside of the normal range. There was no relationship to the developer or to any specific part of the system. After analysis, we discovered that all the problems were related to poor algorithm choices. A poor algorithm, even programmed by a good programmer, still caused more problems that should be expected. If there was one bad reason for the anti-pattern, it was the lack of review of the algorithm, and the tradition of just using the same pattern in multiple places.

It is easy to identify the anti-patterns in your system. Ask the maintainers to identify the anti-pattern in the code, the 20% of the code that causes 80% of the problems. Ask the coders to identify the anti-pattern in the design, the 20% of the design that takes up 80% of the code. Ask the designers to identify the anti-pattern in the requirements, the 20% of the requirements that make up 80% of the design complexity. Anti-patterns are usually not visible by the team creating them, but they are visible to the next team in the system lifecycle; all you have to do is ask them.

Allocate to fix old code

Fixing anti-patterns can be difficult. Usually the cost to fix an anti-pattern after discovery must be weighed against any continual maintenance expenses or redesign expenses. If you expect to extend or fix the anti-pattern section more than a few times, it is usually more cost effective to redesign and re-implement. Unfortunately, this is a difficult decision to justify because the payment can be slow. Fortunately, removing anti-patterns does not have to be done all at once. A reasonable rule of thumb is to allocate 10%-20% of your maintenance budget to replacing anti-patterns with good design patterns. Over time you will find that your maintenance and support costs will stabilize or decrease as bad patterns are replaced with good ones.

Eliminating anti-patterns will give you a system that is easier to maintain and extend, but be sure to look for anti-patterns in all parts of your project, requirements, design, and code. Don’t let the bad habit of no reviews seed your system with future anti-pattern problems.

- Dennis Brandl is president of BR&L Consulting in Cary, N.C., www.brlconsulting.com. His firm focuses on manufacturing IT. Contact him at dbrandl@brlconsulting.com. Edited by Mark T. Hoske, content manager CFE Media, Control Engineering.

www.controleng.com/it 



No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
Hannover Messe 2016: Taking hold of the future - Partner Country status spotlights U.S. manufacturing; Honoring manufacturing excellence: The 2015 Product of the Year Winners
Inside IIoT: How technology, strategy can improve your operation; Dry media or web scrubber?; Six steps to design a PM program
World-class manufacturing: A recipe for success: Finding the right mix for a salad dressing line; 2015 Salary Survey: Manufacturing slump dims enthusiasm
Getting to the bottom of subsea repairs: Older pipelines need more attention, and operators need a repair strategy; OTC preview; Offshore production difficult - and crucial
Digital oilfields: Integrated HMI/SCADA systems enable smarter data acquisition; Real-world impact of simulation; Electric actuator technology prospers in production fields
Special report: U.S. natural gas; LNG transport technologies evolve to meet market demand; Understanding new methane regulations; Predictive maintenance for gas pipeline compressors
Warehouse winter comfort: The HTHV solution; Cooling with natural gas; Plastics industry booming
Managing automation upgrades, retrofits; Making technical, business sense; Ensuring network cyber security
Designing generator systems; Using online commissioning tools; Selective coordination best practices

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
This article collection contains several articles on the vital role that compressed air plays in manufacturing plants.
This article collection contains several articles on the Industrial Internet of Things (IIoT) and how it is transforming manufacturing.
click me