DART and the promise of high power with intrinsic safety

Dynamic Arc Recognition and Termination (DART) technology is set to become an IEC standard after first hitting the headlines in 2008, with the promise of making higher power possible in hazardous areas. Suzanne Gill, Control Engineering Europe, explains the latest.

01/28/2014


Pepperl+Fuchs Dynamic Arc Recognition and Termination (DART) technology achieves higher usable power levels while continuing to provide Ex i (intrinsic safety) explosion protection for Zone 1 hazardous areas. The technology will be considered in Part 39 oIntrinsic safety (IS), the protection technique that ensures the safe operation of electrical equipment in hazardous areas by limiting the energy available for ignition, is well known as being the safest method for spark prevention in hazardous areas.

In 2008, at the Hannover Messe, Pepperl+Fuchs first introduced its alternative solution—the Dynamic Arc Recognition and Termination (DART) technology, which offered the promise of making more power available through dynamic spark protection and promising to lift this power limitation.

DART technology achieves higher usable power levels while continuing to provide Ex i (intrinsic safety) explosion protection for Zone 1 hazardous areas. It offers features such as simplified and maintenance-free installation technology and access to circuits without a hot work permit. Traditionally, these benefits have been possible only at extremely low effective power levels, resulting in intrinsic safety finding its most common application in instrumentation for process automation.

In 2008, the National Metrology Institute of Germany (PTB) and Pepperl+Fuchs brought together a consortium of 15 interested companies. Since its launch in 2008, a work group consisting of 13 companies and headed by the National Metrology Institute of Germany (PTB) has defined the interoperability and proof of explosion protection for DART. Part 39 of the IEC 60079 standard is currently being drawn up on this basis as a technical specification, and the final draft should be available in the spring of 2014 when it will be presented to the IEC for coordination. It is hoped that, with a standard to describe DART technology, manufacturers will be able to implement DART technology into their own products, making many applications in the hazardous area safer and more convenient or easier to handle.

Reliable spark prevention

To recap, DART technology is based on the idea that a spark transmits a very characteristic signal on the cable. This signal can be reliably detected and disabled at the source and at every consumer. Operating current and voltage can, therefore, be significantly higher. DART technology intervenes only at the exact moment when the electrical energy in a spark is converted into heat. The entire process takes just a few microseconds. However, the distance between the source and the spark is an important factor in timing as the spark signal spreads at a finite rate through the cable. The rated power, therefore, depends on the cable distance, while the second crucial variable is the load current that DART must interrupt.

DART Fieldbus

The testing procedure devised by PTB to certify Dart Fieldbus was double-checked and confirmed by a second institution, and it is now certified in line with IEC 60079-11 intrinsic safety according to ATEX and IECEx rules.

As a result, the DART Power Hub and DART Segment Protector form part of the FieldConnex product line. These devices are components of the fieldbus infrastructure that form the connection between the control system and the field device via Foundation fieldbus H1 and Profibus PA protocols—but now with the addition of an intrinsically safe high-power trunk.

An important aim for DART Fieldbus components was to ensure that the technology could be handled easily in real-life situations. To this end, experts with prior experience of developing Fieldbus Intrinsically Safe Concept (FISCO) were on the teams at both PTB and Pepperl+Fuchs to ensure focus on user-friendliness.

With DART Fieldbus, the segment is planned and the explosion protection is validated in a single step. In addition to the planning requirements of the fieldbus standard, a few general conditions need to be met. These include:

  • A topology featuring a trunk and spurs must be used.
  • Fieldbus cable type “A” shall be used.
  • The trunk may measure up to 1000 m in length.

 Together with the DART Power Hub/Segment Couplers, up to four DART Segment Protectors can be connected to the trunk at any point along its length. Using the Segment Checker planning software, the planner can check the voltage levels with just a few clicks of the mouse. The correct functioning of the segment and explosion protection compatibility can therefore be guaranteed well in advance. A free download is of this software is available at www.segmentchecker.com. 

Sparking out

Sparks are caused when a plug is disconnected, so a DART circuit needs to be able to deal with this event in such a way that the availability of the fieldbus segment is completely unaffected. The power supply is switched off for a mandatory few milliseconds to extinguish the spark before it is automatically switched back on again. An important function, considering that the majority of sparks are caused by the intentional establishing or breaking of connections to field devices. An energy reservoir in the DART Segment Protector fills the gap when the main power supply briefly disconnects, allowing field equipment to continue to function. An undesired restart of the instrumentation is prevented even after several short and successive breaks, as would be caused by contact bounce during maintenance work.

The fieldbus protocol continues to run by using its own repeat mechanisms to counteract the effect of these short breaks, just as with any other fieldbus installation. These events are not detected by the field instrumentation or control system.

More convenience in the control room cabinet

Installation work is also reduced compared with fieldbus in general. More important than the savings in capital expenditure, this reduces the risk of wiring errors that are tedious to find.

For the control room cabinet, Pepperl+Fuchs can offer cables with custom connections tailored to popular DCS systems. Cables with custom connectors can significantly reduce the number of manual wire connections in the cabinet. Having fewer connections both saves on wiring labor and reduces testing time and effort before and during the factory acceptance test.

In conclusion, we leave the final word to Andreas Hennecke, product marketing manager, process automation division at Pepperl+Fuchs. He said: “DART Fieldbus, in combination with effective and efficient solutions, can provide a value proposition to everyone in the value chain with best-in-class safety and possibly the lowest risk for errors and faults.”

- Suzanne Gill is editor of Control Engineering Europe. This article originally appeared at www.controlengeurope.com and was edited for the Control Engineering International pages in the January 2014 North American edition of Control Engineering. Edited by Mark T. Hoske, content manager, CFE Media, Control Engineering, mhoske@cfemedia.com.

ONLINE

“DART and the promise of high power with intrinsic safety” appeared Dec. 17 at www.controlengeurope.com and was edited for use in for the Control Engineering International pages in the North American edition.

Read more about updated alarm management guidelines below.



The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
A new approach to the Skills Gap; Community colleges may hold the key for manufacturing; 2017 Engineering Leaders Under 40
Doubling down on digital manufacturing; Data driving predictive maintenance; Electric motors and generators; Rewarding operational improvement
2017 Lubrication Guide; Software tools; Microgrids and energy strategies; Use robots effectively
The cloud, mobility, and remote operations; SCADA and contextual mobility; Custom UPS empowering a secure pipeline
Infrastructure for natural gas expansion; Artificial lift methods; Disruptive technology and fugitive gas emissions
Mobility as the means to offshore innovation; Preventing another Deepwater Horizon; ROVs as subsea robots; SCADA and the radio spectrum
Power system design for high-performance buildings; mitigating arc flash hazards
Research team developing Tesla coil designs; Implementing wireless process sensing
Commissioning electrical systems; Designing emergency and standby generator systems; Paralleling switchgear generator systems

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
The maintenance journey has been a long, slow trek for most manufacturers and has gone from preventive maintenance to predictive maintenance.
Featured articles highlight technologies that enable the Industrial Internet of Things, IIoT-related products and strategies to get data more easily to the user.
This digital report will explore several aspects of how IIoT will transform manufacturing in the coming years.
Maintenance Manager; California Oils Corp.
Associate, Electrical Engineering; Wood Harbinger
Control Systems Engineer; Robert Bosch Corp.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me