Cover Story: What is your relay telling you?

Troubleshoot your motors by understanding your relays.

06/20/2011


A major industrial company recently installed microprocessor-based motor-protection relays to replace the original electromechanical overloads on a number of motors. Wishing to take advantage of all the features of the new units, it enabled the current unbalance function—only to have the relays trip out almost immediately. What was going on?

After doing some investigating, the company found the cause: Pitted contacts on the motor’s starting contactor were reducing the current to one motor phase. Had the problem persisted it eventually would have caused overheating in the motor, potentially shortening its life. Not knowing that the phase currents were unbalanced might have led to needless examination of the motor, which was not at fault, or even a reduction in load to try to reduce the heating. The digital relay made it possible to find the true cause quickly.

Many features of digital motor-protection relays can be used to troubleshoot motor problems, but they may be unfamiliar to operators who are used to simple, traditional thermal motor overloads. This article covers the most common alarms an operator is likely to encounter, their most likely causes, and troubleshooting tips.

The basic protection for a motor, required by most electrical codes, is provided by a relay. Two types are common: an electromechanical device, such as a traditional “overload” relay, and a digital relay. An electromechanical relay is a single function device, but a digital relay typically protects against multiple threats such as overload, phase loss, overcurrent, etc.

A digital motor-protection relay is a more complex beast, but it provides a higher level of protection than the traditional electromechanical relay. Because one device takes all the measurements and can do very fast calculations, complicated parameters can be monitored and acted on intelligently. The digital motor-protection relay can communicate to a control system for monitoring and predictive maintenance, and it has alarms that give descriptive information that can be used to speed troubleshooting. As the prices of digital motor-protection relays have decreased in recent years, more people are using them, often on smaller horsepower motors than in the past. However, because users may not have much experience with these relays, they may not be familiar with the best ways to use them.

Thermal overload

When a relay displays this message about high motor temperature and shuts off the motor, look for changes that may have increased the load, such as a torn conveyor belt, stuck raw material, or failed bearing. Thermal overloads detected by digital relays are not really a result of high temperature. The cause is the motor current exceeding the normal motor current and service factor settings, which is then tracked by the thermal model programmed into the relay.

This model estimates the motor temperature based on the current. Some sophisticated relays use input from temperature sensors on the windings, but often only to “bump up” the thermal model if the calculated temperature is less than what is being measured by the sensor.

Too-frequent starts are another cause of overtemperature, and relays having dynamic thermal-overload capability will protect the motor. A motor built to NEMA standards is designed to provide two starts from cold without damage. To relate this to a thermal model, the motor uses approximately 50% of its available thermal capacity (I2t) with one start.

Therefore, if the motor is interrupted once or twice during a start, it will soon be in danger of damage and the relay should trip. “Thermal capacity” is based on motor specifications entered into the relay by the user and can be customized for fan-cooled motors that do not require the full 50% of the thermal capacity to complete a start.

The advantages of the dynamic thermal model are that it’s more accurate than winding temperature sensors alone, it’s not confined to discrete spots in motor windings, and it reacts faster to sudden changes. Also, because it tracks the motor temperature so accurately, it can keep the operator from restarting the motor when it’s still too hot. In contrast, electromechanical motor overloads cool faster than the motor, which may allow the operator to restart the motor at an unsafe temperature.

In addition, a digital motor-protection relay specifies the “time to reset” so the operator will know when the motor is cool enough to restart. This avoids the frustration of continually checking to see if a restart is permitted, and allows other duties to be performed in the meantime.

Courtesy: Littelfuse Startco

Jam

This message displays if motor current exceeds a set amount (less than starting current) while in Run mode. It directs operators to look for a problem with the load, rather than with the motor. The setpoint for this function (like all relay setpoints) can be password-protected, preventing operators or others from changing it.

With jam protection, the relay must be smart enough to know when the motor is in Startup mode, when it temporarily disables the jam protection. Without this ability, one must specify a time delay after which one assumes the motor has started. Jam protection can detect a mechanical jam in the motor (imagine a crowbar jamming the rotor) or a severe overload that has stopped the motor and will cause extreme damage in a short time.

By the way, some motor-protection relays have a Reduced Overcurrent mode that is separate from the Jam mode. It can be engaged to temporarily reduce the overcurrent setpoint when performing maintenance in a motor circuit when the motor is running. Because it has a fast response time, it may reduce arc-flash energy released during a short circuit.

Earth leakage current

If the relay reports earth leakage, also called a “ground fault,” the cause is likely to be a short in the windings or input wiring, or worn or melted insulation. When the motor is de-energized, check the resistance of the motor wiring. If that does not show a problem, then cautiously check the input wiring for a ground fault, being sure to wear the proper personal protection equipment.

Many plants are upgrading to resistance grounded systems to reduce the risk of arc-flash. Many traditional ground-fault relays were not designed for this type of system and assume large ground-fault currents. For example, the built-in ground fault detection on most variable frequency drives (VFDs) will not trip in a resistance ground system because the setpoint is not low enough. To detect ground faults in a resistance grounded system, newer digital motor-protection relays have the option to accept inputs from sensitive current transformers.

Another method of detecting a phase-to-ground fault is using an insulation monitoring relay. Traditional ground-fault relays detect a fault by measuring the current with a transformer, and some damage to the motor may occur before the relay trips.

An insulation monitoring relay prevents the motor from starting if it detects a ground fault, avoiding that potential damage. However, on a grounded system, the insulation monitor cannot be used while the motor is energized.

Courtesy: Littelfuse Startco

Other relay alarms

Electronic motor-protection relays have many alarms that can assist with troubleshooting. Here are some other common messages:

  • Current unbalance—An unbalance between the three phases. A typical cause is if you have a contactor and one of the contacts is pitted and reducing current on one phase.
    • Phase Loss, Current—One phase has zero current. The two remaining windings have to work harder and get hotter, which can cause damage quickly.
    • Phase Reversal, Current—This happens if a worker connects the wrong phase to a terminal.
  • Undercurrent—Indicates loss of load or a pump run dry.
  • Undervoltage or Overvoltage—If voltage is too low, it can damage the motor. If voltage is too high, it will stress the insulation.
  • Voltage Unbalance—Indicates one phase has a voltage different from the others, often caused by power supply or transformer issues.
  • Underfrequency or Overfrequency—The frequency of the input voltage (VA) is below/above the setpoint.
  • Failure to Accelerate and Underspeed—Uses input from a tachometer to provide information about the motor and load, such as knowing when the motor is rotating too slowly.
  • Motor Differential, Current—Uses additional current transformers to detect small current losses in the windings that could lead to ground faults.

Summary

Plant managers can save troubleshooting time and better protect motors by using digital relays. As relay prices fall and as plants remain understaffed, managers have a good argument for upgrading older thermal-style overloads with modern devices.



No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
Your leaks start here: Take a disciplined approach with your hydraulic system; U.S. presence at Hannover Messe a rousing success
Hannover Messe 2016: Taking hold of the future - Partner Country status spotlights U.S. manufacturing; Honoring manufacturing excellence: The 2015 Product of the Year Winners
Inside IIoT: How technology, strategy can improve your operation; Dry media or web scrubber?; Six steps to design a PM program
Getting to the bottom of subsea repairs: Older pipelines need more attention, and operators need a repair strategy; OTC preview; Offshore production difficult - and crucial
Digital oilfields: Integrated HMI/SCADA systems enable smarter data acquisition; Real-world impact of simulation; Electric actuator technology prospers in production fields
Special report: U.S. natural gas; LNG transport technologies evolve to meet market demand; Understanding new methane regulations; Predictive maintenance for gas pipeline compressors
Warehouse winter comfort: The HTHV solution; Cooling with natural gas; Plastics industry booming
Managing automation upgrades, retrofits; Making technical, business sense; Ensuring network cyber security
Designing generator systems; Using online commissioning tools; Selective coordination best practices

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
This article collection contains several articles on the vital role that compressed air plays in manufacturing plants.
This article collection contains several articles on the Industrial Internet of Things (IIoT) and how it is transforming manufacturing.
This article collection contains several articles on strategic maintenance and understanding all the parts of your plant.
click me