# Correcting induction motor power factor

## Low power factor can drain generation capacity, waste energy, and increase maintenance costs with excessive heating of equipment.

05/20/2014

Most plant managers and maintenance personnel know that induction motors can cause low power factor (PF) and trigger expensive surcharges on electric bills, even if they aren’t sure why. A simple explanation is that low power factor saps the utility’s (or industrial power system’s) generation capacity, wastes energy, and increases maintenance costs by excessive heating of equipment. What follows is a more detailed look at what low power factor is and, more importantly, how to correct it.

Power usage in ac circuits

Before going further, it may be helpful to review how power is used in ac circuits (see Figure 1). The real or input power (P), measured in kilowatts (kW), is the amount of power that does actual work. If the circuit has inductive loads like motors, the power required for exciting or magnetizing currents is called reactive power (Q) and is measured in kilovolt-ampere reactive (kvar) units. The combination of real power and reactive power needed by the system is the apparent power (S). The apparent power, measured in kilovolt-amperes (kVA), is proportional to the product of the voltage and total current.

Not all of the total current contributes to the real power that does the work, but utilities and industrial power operators still must size generation, transmission and distribution equipment to match the apparent power requirements of the system.

Power factor

Power factor in an ac circuit is the ratio of the real power to the apparent power.

As the reactive power drawn from the network decreases, the apparent power also decreases and approaches the real power. A purely resistive ac circuit would have a perfect power factor of 1.0 with zero reactive power. By contrast, a wholly inductive ac circuit theoretically could have a power factor that is very low or zero, if the real power approaches or equals zero. Although many industrial circuits have both resistive and inductive components, it will take more current to deliver the required amount of real power to a plant that has a low power factor due to induction motors.

For utilities and industrial power system operators, that means generating extra electricity to compensate for what is being wasted or lost as heat. For industrial customers, it may mean power bill surcharges and/or power quality issues on plant distribution systems. If the power factor is low enough, higher capacity wiring, switches, circuit breakers and transformers may be needed to handle the extra current.

Common ways to improve power factor

Power factor is usually improved by use of synchronous motors or power factor correction capacitors (PFCCs). In either case, reactive power is supplied locally to reduce the apparent power demand, whether the purpose is to reduce utility surcharges or, in the case of industrial power system operators, to create additional capacity. The simplest and most cost-effective way to correct existing installations is to add of PFCCs to the distribution system, giving careful consideration to capacitor ratings and locations.

Capacitor location: Figure 2 shows three possible locations for installation of PFCCs. In Location 1, the capacitors remain energized all the time. If the right inductive load is present, serious current surges (resonance) can occur, resulting in high voltage on the bus. Location 1 is recommended, however, in special cases where jogging or frequent switching occurs, such as with elevator motors, multispeed motors, open transition autotransformer starting, wye-delta (Y-Δ) starting and part winding starting (except extended or double-delta).

Locations 2 and 3 have the advantage of the PFCCs being offline when the motor is offline. When using Location 3, however, it’s critical that the overload devices be downsized, because the capacitor reduces the circuit current through them. For this reason, Location 2 is recommended in most situations.

Capacitor sizing: When sizing the capacitors, select values that will minimize the risk of excessive voltage, as well as transient currents and torques. With the capacitors installed (see Figure 3), the reactive power (Q1) required from the bus is the difference between the motor’s reactive power demand (Q3) and the reactive power supplied by the capacitors (Q2). To balance performance against the risks associated with over-excitation, it’s typically desirable to raise the power factor to 0.90 or 0.95.

As an example, consider a three-phase, 250-hp, 460-V, 277-amp, 4-pole induction motor with efficiency (eff) of 96.2% and a power factor of 0.88. To determine the capacitor rating needed to raise the power factor to 0.95, first calculate the real or input power:

Next, since the existing power factor is 0.88 = cos (φ1) and the new power factor is 0.95 = cos (φ2), we find φ1 = 28.36 deg and φ2 = 18.19 deg. The correction capacitor rating will be equal to the amount of locally generated reactive power (Q2) needed to raise the power factor to 0.95:

For any phase angle φ1, the value tan (φ1) is the ratio of reactive to real power (kvar/kW). Thus multiplying P by the ratio Q/P above leaves Q (the reactive power). For convenience, some common values of [tan (φ1) – tan (φ2)] are supplied in Table 1.Select the nearest standard rating to the calculated value.

The effect of improved power factor

To determine the effect of improved power factor, calculate the total current (I) required from the system before and after correction:

For the above example, the current decreased by 21 amp, or 7.6%. It’s important to note that power factor varies with load, so these values would only be valid for the loading used for the calculations.

When considering power factor correction, it’s best to consult the motor manufacturer or a firm experienced with this modification. Doing so will ensure that the application is appropriate, the capacitors are sized correctly, and the optimum installation location is chosen.

Mike Howell is a technical support specialist at the Electrical Apparatus Service Association Inc. (EASA). EASA is an international trade association of more than 1,900 firms in 62 countries that sell and service electrical, electronic and mechanical apparatus.

The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
Doubling down on digital manufacturing; Data driving predictive maintenance; Electric motors and generators; Rewarding operational improvement
2017 Lubrication Guide; Software tools; Microgrids and energy strategies; Use robots effectively
Prescriptive maintenance; Hannover Messe 2017 recap; Reduce welding errors
The cloud, mobility, and remote operations; SCADA and contextual mobility; Custom UPS empowering a secure pipeline
Infrastructure for natural gas expansion; Artificial lift methods; Disruptive technology and fugitive gas emissions
Mobility as the means to offshore innovation; Preventing another Deepwater Horizon; ROVs as subsea robots; SCADA and the radio spectrum
Research team developing Tesla coil designs; Implementing wireless process sensing
Commissioning electrical systems; Designing emergency and standby generator systems; Paralleling switchgear generator systems
Natural gas engines; New applications for fuel cells; Large engines become more efficient; Extending boiler life

### Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
The maintenance journey has been a long, slow trek for most manufacturers and has gone from preventive maintenance to predictive maintenance.
Featured articles highlight technologies that enable the Industrial Internet of Things, IIoT-related products and strategies to get data more easily to the user.
This digital report will explore several aspects of how IIoT will transform manufacturing in the coming years.
Maintenance Manager; California Oils Corp.
Associate, Electrical Engineering; Wood Harbinger
Control Systems Engineer; Robert Bosch Corp.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.