Cool hot machines with vortex tube technology

Machine builder cools enclosures with a compressed-air system that also creates positive pressure to eliminate airborne contaminants.


Jessup Engineering specializes in engineered-to-order, automated dip processing machines for global finishing operations, including systems designed and built for industries ranging from aircraft, marine, and automotive to plumbing fixtures, appliances, and hardware. Whatever the industry, Jessup's sophisticated electronic systems must perform in typically harsh, corrosive environments where humidity and airborne contaminants are prevalent. But engineers at the company noticed persistent maintenance and reliability problems related to attempts to cool its enclosures.

According to Jessup Control Systems' Engineer Chuck Danto, regular refrigerant-based air conditioners were shutting down in as little as 12 months because they were unable to withstand the corrosive environment of the typical surface finishing shop. “With the air conditioner's not working, then we would have the long-term destructive effects of the heat and humidity, and what it would do to the electronic components,” he says. “There are a lot of PLCs [programmable logic controllers], variable speed drives, and equipment for motion profiling that generate heat. It was always a battle between keeping the enclosure completely sealed to keep the environment out, but taking the trade off of the heat and the long-term effects of what it would do.”

Danto says Jessup solved the problem with a compressed-air based Vortex A/C cooler from Vortec, an ITW Air Management company. In 1961, Vortec developed the technology for converting the vortex tube phenomenon into industrial cooling solutions.

A vortex tube spins compressed air into a vortex where hot and cold airstreams are separated at rotational speeds of up to 1 million rpm.

How vortex tube technology works

With no moving parts, a vortex tube spins compressed air into a vortex where hot and cold airstreams are separated at rotational speeds of up to 1 million rpm. The hot air is muffled and exhausted out the back of the unit, while the cold air can become as much as 50 °F colder than the compressed air inlet temperature. The cold air stream passes through an external muffler before being released into the electrical enclosure, where it creates a positive pressure (1-2 psi) to keep external contaminants from entering the cabinet. As cold air loses its refrigeration to cool the electronics, it forces rising hot air out of vent openings. A built-in mechanical thermostat operates a valve to control airflow and cooling to maintain the cabinet within a temperature range of 80-90 °F.

“For us, the simplicity of it is its beauty,” says Danto. “Since it has no real maintenance or service involved, there's a big cost advantage long term.”

The Vortec system solved Jessup's heat and environmental issues on all fronts by consistently delivering below-ambient cooling in environments up to 175° F (as opposed to maximum ambient cooling of 131° F for refrigerant-based air conditioners), in addition to creating a positive pressure environment with the optional “purge-air” port on the Vortex A/C. Additional protection is provided by a 5-micron, auto-drain compressed air filter, to ensure that only clean, dry, refrigerated air enters the cabinet.

Danto says the compact size, aesthetic appeal, and ease of installation of the Vortex A/C also were key factors in Jessup's decision to integrate the non-electric cooling device into its automation systems. The unit's mounting footprint is less than one-tenth the size of a comparable air conditioner used to cool electrical enclosures, he says, and “we don't have to size the electrical transformer or the control system power to run an air conditioner—that's an advantage to us as an OEM.”

Author Information

Dave Kemp is writer for Vortec, Cincinnati, OH.

No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2013 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
The true cost of lubrication: Three keys to consider when evaluating oils; Plant Engineering Lubrication Guide; 11 ways to protect bearing assets; Is lubrication part of your KPIs?
Contract maintenance: 5 ways to keep things humming while keeping an eye on costs; Pneumatic systems; Energy monitoring; The sixth 'S' is safety
Transport your data: Supply chain information critical to operational excellence; High-voltage faults; Portable cooling; Safety automation isn't automatic
Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Plant Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.

Maintaining low data center PUE; Using eco mode in UPS systems; Commissioning electrical and power systems; Exploring dc power distribution alternatives
Synchronizing industrial Ethernet networks; Selecting protocol conversion gateways; Integrating HMIs with PLCs and PACs
Why manufacturers need to see energy in a different light: Current approaches to energy management yield quick savings, but leave plant managers searching for ways of improving on those early gains.

Annual Salary Survey

Participate in the 2013 Salary Survey

In a year when manufacturing continued to lead the economic rebound, it makes sense that plant manager bonuses rebounded. Plant Engineering’s annual Salary Survey shows both wages and bonuses rose in 2012 after a retreat the year before.

Average salary across all job titles for plant floor management rose 3.5% to $95,446, and bonus compensation jumped to $15,162, a 4.2% increase from the 2010 level and double the 2011 total, which showed a sharp drop in bonus.

2012 Salary Survey Analysis

2012 Salary Survey Results

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.