'Cool’ design for power supplies

Modern mains power supplies are extremely compact, but dissipate a substantial amount of power as heat while operating. This very often leads to overheating of internal components, which in turn has an adverse effect on reliability and the lifetime of the power supply. Typically, the heat dissipation is so high that, to keep the power supply components at a safe operating temperature, the desi...

08/01/2008


Modern mains power supplies are extremely compact, but dissipate a substantial amount of power as heat while operating. This very often leads to overheating of internal components, which in turn has an adverse effect on reliability and the lifetime of the power supply.

Typically, the heat dissipation is so high that, to keep the power supply components at a safe operating temperature, the design engineer has no other choice but to use a fan to cool the components. The use of mechanical fans, however, often represents a technically unsatisfactory solution because of their relatively low reliability and irritating noise.

Group 1: Top and bottom thermal images of the 65 W flyback power supply. Source: TracoPower

Group 1: Top and bottom thermal images of the 65 W flyback power supply.

Flyback vs. half-bridge

The most used topology for switch-mode power supplies is the flyback converter. The rectified input voltage in a flyback converter is connected to the primary coil of the inductor during the on phase of the switching transistor.

While the transistor is switched off, the stored inductor current flows toward the output from the secondary coil to the output capacitor via the output rectifier diode. The output diode is idle while the input transistor is switched on, and the switching transistor is idle while the output rectifier diode is switched on. This leads to high effective currents in all devices.

This topology is cost-efficient, but it incorporates such disadvantages as high peak and RMS (root mean square) currents in power semiconductors, transformers, and capacitors. This leads to high temperatures in all circuit components, including the printed circuit board.

Poor energy conversion efficiency, as a result of power losses, causes high temperature stress to the electronic components, leading to a significantly higher failure rate of the power supplies. These failures are not evident during the initial testing and performance verification of the power supply within the application, but become very marked in field use over time.

Unlike the flyback converter, the half-bridge converter comprises two primary switching transistors, two output diodes, and a separate storage inductor on the output side of the transformer. The switching transistors connect the transformer alternatively to the rectified mains voltage. Therefore, the energy is transferred through the transformer for a much longer duty cycle, which leads to much lower current pulses in all components.

Temperature distribution

Thermal pictures taken of a typical 65 Watt flyback power supply and a 100 Watt half-bridge power supply (image groups 1 and 2), both with dimensions of 2 x 4 x 1.2 inch, show the temperature distribution between the two power supplies.

In image group 1, large areas on the component side of the 65W flyback power supply are very hot. In particular, semiconductors mounted on heat sinks near the mains input side and on the output side appear white on the image, indicating that they have already reached around +100 °C at ambient room temperature. It is easy to imagine what will happen if such a power supply unit were used in an application with little installation space and low air circulation. The components would inevitably become overheated.

In image group 2, areas with extremely high operating temperatures on the 100 W half-bridge power supply are visible, particularly in the area around the transformer. This PCB area is intensely heated by the surrounding semiconductor devices, and the printed circuit board is nearly +100 °C at ambient room temperature. In the region around the output diodes, the temperature on the PCB is also very high.

Group 2: Top and bottom thermal images of the 1100W half-bridge power supply. Source: TracoPower

Group 2: Top and bottom thermal images of the 1100W half-bridge power supply.

On both the component side and the solder side, the 65 W flyback power supply unit is considerably hotter than the 100 W unit under same load conditions. The 100 W power supply remains not only significantly cooler at 65 W output power, but can deliver 100 W output power in the same 2 x 4 in. format without any overheated components.

The calculated MTBF (mean time between failure) value for a power supply unit with a flyback converter, in accordance with IEC 61709 (taking into account stress factors for voltage, current, and temperature) is approximately 200,000 hours. In contrast, the power supply unit with a half-bridge converter, with the same physical volume and load conditions, provides a 5 to 10 times better MTBF.



Author Information

Dr. Werner Woelfle is head of engineering for TracoPower. TracoPower offers the Top-100 power supply unit based on a resonant pulsed half-bridge circuit.




No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
World-class manufacturing: A recipe for success: Finding the right mix for a salad dressing line; 2015 Salary Survey: Manufacturing slump dims enthusiasm
2015 Top Plant: Phoenix Contact, Middletown, Pa.; 2015 Best Practices: Automation, Electrical Safety, Electrical Systems, Pneumatics, Material Handling, Mechanical Systems
A cool solution: Collaboration, chemistry leads to foundry coat product development; See the 2015 Product of the Year Finalists
Digital oilfields: Integrated HMI/SCADA systems enable smarter data acquisition; Real-world impact of simulation; Electric actuator technology prospers in production fields
Special report: U.S. natural gas; LNG transport technologies evolve to meet market demand; Understanding new methane regulations; Predictive maintenance for gas pipeline compressors
Cyber security cost-efficient for industrial control systems; Extracting full value from operational data; Managing cyber security risks
Getting ready for industrial IoT; Visualizing the (applied) automation continuum; Preventing VFD faults and failures; Using wireless for closed-loop applications
Migrating industrial networks; Tracking HMI advances; Making the right automation changes
Understanding transfer switch operation; Coordinating protective devices; Analyzing NEC 2014 changes; Cooling data centers

Annual Salary Survey

After almost a decade of uncertainty, the confidence of plant floor managers is soaring. Even with a number of challenges and while implementing new technologies, there is a renewed sense of optimism among plant managers about their business and their future.

The respondents to the 2014 Plant Engineering Salary Survey come from throughout the U.S. and serve a variety of industries, but they are uniform in their optimism about manufacturing. This year’s survey found 79% consider manufacturing a secure career. That’s up from 75% in 2013 and significantly higher than the 63% figure when Plant Engineering first started asking that question a decade ago.

Read more: 2014 Salary Survey: Confidence rises amid the challenges

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
This article collection contains several articles on the vital role that compressed air plays in manufacturing plants.