Control is in the Details

Don’t underestimate how little things can affect the big picture.

05/14/2012


Over the range of projects we work on, we find ourselves constantly shifting focus from very distant overhead views to the minutest details. For the most part, we tend to relate the big picture information effects to big picture decisions. After all, little detail oriented decisions really only affect a component level change. While we certainly do not hold these guidelines to be law, these concepts oftentimes cloud our judgment and narrow our view of root cause options. Sometimes something small can have a big picture effect.

 

Web handling encoder rounding

The answer to the problem came mathematically. Because the various sized tooling rollers had different configurations of teeth, the scaling in the servo setup had to change with the tooling. Unfortunately, on many of the rollers the numbers of teeth were prime numbers. One of my favorite instances of a very small detail affecting an overall system is one concerning the encoder configuration of a servo motor. This particular problem grew out of a need for frequent tooling changes on a web handling machine that operated continuously. It was used to cut a web into sheets with a very tight tolerance for error. The specific tooling was a cogged roller used to meter the web.

 

The problem presented itself when specific sets of tooling would aggregate error until the product would eventually drift out of tolerance. The investigation to determine the root cause began by characterizing the mechanical properties of the tools generating the error. After confirming the dimensions of the tooling, the investigation moved to the power transfer unit. All gearing and belts were examined for hysteresis or slippage. None of this was found to be out of tolerance.

 

The answer to the problem came mathematically. Because the various sized tooling rollers had different configurations of teeth, the scaling in the servo setup had to change with the tooling. Unfortunately, on many of the rollers the numbers of teeth were prime numbers. The configuration of the servo encoder allowed for a user definition of counts per revolution and counts per unit of measure. In this case, the measuring units of the sheet size were teeth on the tool. This is how the configuration defined teeth per turn of the tool. The configuration of the encoder could be modified at run time, such that the counts per unit could be changed, but the counts per revolution could not be modified.

 

For those of you who stuck with me through the minutia, here is the root cause. In order to avoid error, all encoder scaling had to happen in integer math. In order to create a tool configuration, the counts per turn had to be divisible by all the tooth counts, including the prime numbers. That meant we had to use a number which was larger than the double integer defining this value in the software. In short, we had an insolvable problem. No matter how we defined the counts per revolution, we would always have tooling which could not evenly divide the number of counts per tooth, thus creating an error. This error would aggregate over time until the sheet length moved out of tolerance.

 

This very small configuration issue ended up creating a scenario which generated much larger production problems. The error was small enough to be concealed during early testing, but once in production, it would generate scrap and downtime on a regular basis. The fix was simple enough. By simply adjusting the position of the encoder on a regular basis according to a predicted rounding error, the aggregation of the error was mitigated.

 

 

This post was written by Karl Schrader. Karl is a senior engineer at MAVERICK Technologies, a leading system integrator providing industrial automation, operational support and control systems engineering services in the manufacturing and process industries. MAVERICK delivers expertise and consulting in a wide variety of areas including industrial automation controls, distributed control systems, manufacturing execution systems, operational strategy, and business process optimization. The company provides a full range of automation and controls services – ranging from PID controller tuning and HMI programming to serving as a main automation contractor. Additionally MAVERICK offers industrial and technical staffing services, placing on-site automation, instrumentation and controls engineers. 



No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2013 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
The true cost of lubrication: Three keys to consider when evaluating oils; Plant Engineering Lubrication Guide; 11 ways to protect bearing assets; Is lubrication part of your KPIs?
Contract maintenance: 5 ways to keep things humming while keeping an eye on costs; Pneumatic systems; Energy monitoring; The sixth 'S' is safety
Transport your data: Supply chain information critical to operational excellence; High-voltage faults; Portable cooling; Safety automation isn't automatic
Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Plant Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.

Maintaining low data center PUE; Using eco mode in UPS systems; Commissioning electrical and power systems; Exploring dc power distribution alternatives
Synchronizing industrial Ethernet networks; Selecting protocol conversion gateways; Integrating HMIs with PLCs and PACs
Why manufacturers need to see energy in a different light: Current approaches to energy management yield quick savings, but leave plant managers searching for ways of improving on those early gains.

Annual Salary Survey

Participate in the 2013 Salary Survey

In a year when manufacturing continued to lead the economic rebound, it makes sense that plant manager bonuses rebounded. Plant Engineering’s annual Salary Survey shows both wages and bonuses rose in 2012 after a retreat the year before.

Average salary across all job titles for plant floor management rose 3.5% to $95,446, and bonus compensation jumped to $15,162, a 4.2% increase from the 2010 level and double the 2011 total, which showed a sharp drop in bonus.

2012 Salary Survey Analysis

2012 Salary Survey Results

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.