CNC machines push linear encoder limits

The bleeding edge limitation for CNC accuracy and reproducibility involves thermal expansion. One solution is to provide a second, shorter, encoder axis at right angles to the main axis. Here's how.

09/07/2010


CNC machines need encoders for accurately controlling the traversing axes of a machine tool, according to Ryan Legg, product marketing manager for Sinumerick CNC systems at Siemens Industry. “You’ll typically find a rotary encoder physically on the back of each motor. High-end automated machines also have a linear encoder mounted on the machine axis itself.”

Computer numerical controlled (CNC) machines are specialized multi-axis motion control systems. Unlike the manually operated machine tools they replace, CNC machine tools typically have a separate motor to run each axis.

The 1D plus encoder from Heidenhain adds a short cross-track encoder read out for a second dimension. Source: HeidenhainA horizontal-bed lathe, for example, could have four axes: spindle rotation, longitudinal motion parallel to the spindle axis, cross feed horizontal motion at right angles to the spindle axis, and vertical motion. In a manual lathe, one motor runs the spindle, and, through a transmission and lead screw, the longitudinal axis. The cross-feed and vertical motions were usually (although not always) driven by hand cranks operated by a machinist.

A CNC lathe, however, has four servomotors to separately drive the four axes. Each servomotor has a rotary encoder to track its motion, but those encoders can’t account for wear, slippage, or backlash in the mechanics. To hold the tolerances expected of these machines, which can exceed 0.0001 inches (2.54 microns), the lathe benefits from high precision encoders to track the actual cutting-tool position. Three out of the four motion axes are linear, and only one is rotational, so such a CNC lathe could use three high-precision linear encoders. The encoder technology of choice is the optical glass encoder.

The bleeding edge limitation for CNC accuracy and reproducibility involves thermal expansion. Operating temperatures of these machine tools varies with time. During start up or commissioning, or after an idle period, the machine’s structure is relatively cool. As the machine operates, temperatures rise, and metal components expand, introducing fabrication errors. Depending on design tolerances of the parts being fabricated, thermal expansion coefficients of the materials used in machine-tool construction, and the linear dimensions involved, thermal expansion can easily exceed allowable tolerances for machined parts.

One solution, as shown by the 1D plus encoder from Heidenhain Corp., is to provide a second, shorter, encoder axis at right angles to the main axis. This second axis can be used to sense movement — especially due to thermal expansion — of the cutting tool simultaneously with motion on the main axis.

Suppose a 1 m encoder is used to sense tool movement along the x axis. The actual position will be due to the intended motion, plus a modification due to thermal expansion. The cross-axis reading, however, will be due to thermal expansion alone. As thermal expansion in isotropic materials is, well, isotropic, the CNC controller can use the thermal expansion sensed by the cross axis measurement to calculate a correction to the direct-axis measurement, removing the thermal-expansion error.

Also see the Control Engineering...

Machine Control Channel;

Sensors New Product area;

www.heidenhain.com;and

www.usa.siemens.com/cnc

- C.G. Masi is a contributing editor for Control Engineering, www.controleng.com.  Reach him at cgmasi(at)cgmasi.com.

 



No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2013 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Leaders Under 40 program features outstanding young people who are making a difference in manufacturing. View the 2013 Leaders here.
The new control room: It's got all the bells and whistles - and alarms, too; Remote maintenance; Specifying VFDs
2014 forecast issue: To serve and to manufacture - Veterans will bring skill and discipline to the plant floor if we can find a way to get them there.
2013 Top Plant: Lincoln Electric Company, Cleveland, Ohio
Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Plant Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.

Bring focus to PLC programming: 5 things to avoid in putting your system together; Managing the DCS upgrade; PLM upgrade: a step-by-step approach
Balancing the bagging triangle; PID tuning improves process efficiency; Standardizing control room HMIs
Commissioning electrical systems in mission critical facilities; Anticipating the Smart Grid; Mitigating arc flash hazards in medium-voltage switchgear; Comparing generator sizing software

Annual Salary Survey

Participate in the 2013 Salary Survey

In a year when manufacturing continued to lead the economic rebound, it makes sense that plant manager bonuses rebounded. Plant Engineering’s annual Salary Survey shows both wages and bonuses rose in 2012 after a retreat the year before.

Average salary across all job titles for plant floor management rose 3.5% to $95,446, and bonus compensation jumped to $15,162, a 4.2% increase from the 2010 level and double the 2011 total, which showed a sharp drop in bonus.

2012 Salary Survey Analysis

2012 Salary Survey Results

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.