CERN Project Targets Safety and Environment

CERN, the European Organization for Nuclear Research, is home to the Large Hadron Collider (LHC), a particle accelerator used by physicists to study the fundamental building blocks of all things. LHC is the result of collaboration between 10,000+ scientists and engineers representing 500 academic institutes, laboratories, educational institutions and industrial companies worldwide.

02/01/2009


CERN, the European Organization for Nuclear Research, is home to the Large Hadron Collider (LHC), a particle accelerator used by physicists to study the fundamental building blocks of all things. LHC is the result of collaboration between 10,000+ scientists and engineers representing 500 academic institutes, laboratories, educational institutions and industrial companies worldwide.

Accelerator operation involves nuclear interactions between high-energy particles, which create ionizing-radiation fields, so constant reporting on radiation levels as well as on air and water quality is required. In addition, the system must adhere to IEC 61508 safety standards. CERN invested in a state-of-the-art radiation monitoring and alarming system for the LHC, known as The Radiation Monitoring System for the Environment and Safety (RAMSES).

RAMSES integrates monitoring and control functions for CERN

RAMSES integrates monitoring and control functions for CERN's Large Hadron Collider experiment.

RAMSES’ functional requirements include:

Monitoring radiation levels (on-line, local and remote displays) — Monitoring of ambient dose equivalent rates in the working environment from stray radiation or induced activity, and measurement of radioactivity in released air and water;

Alarm functions (local and remote) — radiation-level alarms based on ambient dose equivalent rates, technical alarms, and interlocks;

Long-term permanent and reliable data logging — measured values, events (radiation alarms, interlocks, system fault alarms, technical alarms), and system configuration and modifications.

CERN has designed its industrial automation project to do away with any silos of automation in order to create a completely integrated data environment that will result in a central communications center. This center also manages the conventional monitoring of water (pH, temperature, conductivity, and turbidity), air quality, wind speed and direction, and provides ambient dose equivalent and ambient dose equivalent rate measurements in the LHC underground areas and above ground, both inside and outside the CERN perimeter.

The system is comprised of approximately 300 radiation and environmental detectors (about 700 measurement channels) grouped into 150 monitoring stations. The hundreds of detectors are integrated with Siemens S7-200 PLCs and use Kepware’s OPC server technology, KEPServerEX, to achieve enhanced data exchange between OPC Clients and the PLCs. KEPServerEx’s Modbus driver is used to communicate with the Integrated Monitoring Station (IMS) which controls the hand and foot monitors (HFM), tools and material controller (PCM) and the site gate monitor (SGM).

Monitoring stations are comprised of a PLC and a touch panel that monitors measured values and alarms from the PLCs and generates plain text data files that are copied to the supervisory servers (SCADA servers). The servers 'inject’ the data into an Oracle relational database via the Oracle SQL Loader.

The communications system has become an integral facilitator of the exchange of data, providing seamless connectivity between the PLC protocols (Siemens and Modbus), the SCADA system (ARC Informatique’s PCVue) and the Oracle database. Due to the importance of the RAMSES system and its round-the-clock operation, reliability became the most important factor in the communication system. The error handling and diagnostics of the Kepware communications ensures the overall data integrity and reliability of the system.

It’s estimated that by the conclusion of the RAMSES project in the spring of 2009, CERN will have gained significant regulatory compliance, safety and administrative efficiencies by creating one centralized monitoring system.


Author Information

Roy Kok is vice president of sales and marketing at Kepware. Contact him by email at roy.kok@kepware.com .




No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2013 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
The true cost of lubrication: Three keys to consider when evaluating oils; Plant Engineering Lubrication Guide; 11 ways to protect bearing assets; Is lubrication part of your KPIs?
Contract maintenance: 5 ways to keep things humming while keeping an eye on costs; Pneumatic systems; Energy monitoring; The sixth 'S' is safety
Transport your data: Supply chain information critical to operational excellence; High-voltage faults; Portable cooling; Safety automation isn't automatic
Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Plant Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.

Maintaining low data center PUE; Using eco mode in UPS systems; Commissioning electrical and power systems; Exploring dc power distribution alternatives
Synchronizing industrial Ethernet networks; Selecting protocol conversion gateways; Integrating HMIs with PLCs and PACs
Why manufacturers need to see energy in a different light: Current approaches to energy management yield quick savings, but leave plant managers searching for ways of improving on those early gains.

Annual Salary Survey

Participate in the 2013 Salary Survey

In a year when manufacturing continued to lead the economic rebound, it makes sense that plant manager bonuses rebounded. Plant Engineering’s annual Salary Survey shows both wages and bonuses rose in 2012 after a retreat the year before.

Average salary across all job titles for plant floor management rose 3.5% to $95,446, and bonus compensation jumped to $15,162, a 4.2% increase from the 2010 level and double the 2011 total, which showed a sharp drop in bonus.

2012 Salary Survey Analysis

2012 Salary Survey Results

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.