Case study: Preventing surge in a medium-size process gas compressor

The following case study highlights a plant's struggle to prevent surge while using a four-impeller, 1.6 MW integrally geared centifugal gas compressor. The problem and three solutions are discussed.

04/22/2014


The problem:

The plant's compressor increases the process gas pressure from approximately 6 Barg to around 53 Barg. This integrally geared compressor is driven by a high-speed 3,000 rpm constant-speed electric-motor driver. The first and second stage speed is around 32,000 rpm and the third/fourth stage speed is around 45,000 rpm. An intercooler is provided between the second stage and the third stage. The compressor package is around 25% oversized considering 25% unit expansion in future.

The IGV was not provided for capacity control. The capacity control was via a suction control valve (the inlet throttle valve) that provided the pressure drop on the suction line. This control valve was the only tool for the capacity adjustment, which worked based on the pressure signals of the discharge and athe suction immediately upstream of the first stage (the first impeller). On the normal operation (the operation at 75% of the rated compressor), the anti-surge valve was always partially open. Single anti-surge valve was provided for four stages, from the downstream of the fourth stage to the upstream of the first stage (the inlet separator drum). The suction control valve (the inlet throttle valve for the capacity control) was located upstream of the inlet separator drum. 

The following important considerations should be noted for this compressor:

  • This integrally-geared compressor (four-stage machine) could not be operated as a variable-speed machine because of complex dynamic responses. 
  • IGV cannot be provided due to complexity and high costs. 

A portion of this 25% extra capacity was controlled by the anti-surge valve (the bypass valve), which was wasteful and problematic. In addition, the surge controller became active (independent from the inlet throttle valve control loop), and it often interacted with the inlet throttle valve, which caused unstable operation. Two loops acting simultaneously produced an oscillation that is the characteristic of physically-coupled, independently-controlled loops. Instabilities in the operation particularly the discharge pressure oscillations and oscillations in both the anti-surge valve and the inlet throttle valve were reported.

The solution:

The first proposed solution was to move the anti-surge valve return point from the inlet separator to the upstream of the suction control valve (the inlet throttle valve for the capacity control). This solution was not approved because it could result in poor surge prevention and the possibility of destructive surge. This solution—moving the anti-surge valve return point from the inlet separator to the upstream of the inlet throttle valve—could result in poor surge control because the anti-surge valve was a fast acting valve (response time 1-2 s), but the inlet throttle valve was a relatively lazy valve and it reacted slowly. 

This proposed solution recommended a minimum position of the inlet throttle valve to assure the anti-surge flow. The minimum position (50% or similar) of the inlet throttle valve was not be sufficient because in case of surge, the fast reaction and a flow more than the flow allowed by the minimum position would be required. Obviously, this could be a considerable restriction in the anti-surge system. The loops were independent, and there could be cases where a compressor was very close to surge and the anti-surge valve would try to open and feed more flow to a compressor, but the inlet throttle valve (because controlled by another loop) may start to close and restrict the flow. 

Another issue was the failure or the malfunction of the inlet throttle valve. In case of a failure or malfunction in the inlet throttle valve, the anti-surge system could be totally ineffective. The anti-surge return point should be as close to the compressor as possible to better feed the anti-surge flow to compressor, and this proposed change could move the anti-surge return point away from the compressor inlet. In addition, there was a possibility of new instabilities in the system because two valves in the series, which were controlled by two independent loops, might introduce new cases of instability. 

The second proposed solution was to operate a manual globe valve at the suction to provide further pressure drop and possibly further capacity control capability. This solution was not approved because it could change the process conditions at the battery limit of the compressor package, which could result in loss of validity of the compressor package design. Any centrifugal compressor is sensitive to suction condition changes. An integrally-geared centrifugal compressor is more sensitive to these changes. A solution based on the manual suction valve operation could not offer a good controlability. In addition, there were questions about how this solution could offer a better capacity control since if further pressure drop at suction was useful, why this could not be achieved by the inlet throttle valve in a controlled and proper manner. 

There was a risk that an uncontrolled manipulation of this manual valve can result in surge or other dynamic issues. Considering the flow and the discharge pressure were around 75%, which was approximately 95% of the rated flow and the rated discharge pressure respectively, the operating point was near the surge line. As a result, the operation of the anti-surge valve should not be unexpected. The anti-surge valve should be opened to keep the compressor away from the surge zone. Based on the second proposed solution (the operation of the manual valve at the upstream of the inlet throttle valve), the manual valve closing could decrease the suction pressure and flow. 

The third proposed solution was a combined anti-surge and control system. In simple terms, this was a system that measured necessary parameters and operate both the suction control valve and the anti-surge valve. To better explain, the solution was a combined control system with decoupled features rather than two independent control loops. This solution used the anti-surge valve only for the anti-surge application. This was not complex, but this was a combined control system. This eliminated the root-cause of issues, which was the concept behind the two independent loops. The combined control system was implemented, which resulted in a long-term trouble-free operation of the compressor. 

Amin Almasi is a senior rotating equipment consultant in Australia. He is chartered professional engineer of Engineers Australia (MIEAust CPEng – Mechanical) and IMechE (CEng MIMechE) in addition to a M.Sc. and B.Sc. in mechanical engineering and RPEQ (Registered Professional Engineer in Queensland).

Edited by Jessica DuBois-Maahs, associate content manager, CFE Media, jdmaahs(at)cfemedia.com.



No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2013 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
The true cost of lubrication: Three keys to consider when evaluating oils; Plant Engineering Lubrication Guide; 11 ways to protect bearing assets; Is lubrication part of your KPIs?
Contract maintenance: 5 ways to keep things humming while keeping an eye on costs; Pneumatic systems; Energy monitoring; The sixth 'S' is safety
Transport your data: Supply chain information critical to operational excellence; High-voltage faults; Portable cooling; Safety automation isn't automatic
Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Plant Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.

Maintaining low data center PUE; Using eco mode in UPS systems; Commissioning electrical and power systems; Exploring dc power distribution alternatives
Synchronizing industrial Ethernet networks; Selecting protocol conversion gateways; Integrating HMIs with PLCs and PACs
Why manufacturers need to see energy in a different light: Current approaches to energy management yield quick savings, but leave plant managers searching for ways of improving on those early gains.

Annual Salary Survey

Participate in the 2013 Salary Survey

In a year when manufacturing continued to lead the economic rebound, it makes sense that plant manager bonuses rebounded. Plant Engineering’s annual Salary Survey shows both wages and bonuses rose in 2012 after a retreat the year before.

Average salary across all job titles for plant floor management rose 3.5% to $95,446, and bonus compensation jumped to $15,162, a 4.2% increase from the 2010 level and double the 2011 total, which showed a sharp drop in bonus.

2012 Salary Survey Analysis

2012 Salary Survey Results

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.