Case study: Data center retrofit

Any time the reliability demand is high and the data center has to work around pre-existing building constraints, there are significant design challenges. However, creative engineering can turn just about any challenge into a data center with real reliability.

11/17/2013


This shows the vista switchgear conduit entry detail, with medium-voltage systems routed under the slab. Courtesy: ESDWith approximately 120,000 sq ft of white space divided into eight Tier III, 2 MW power data halls, the 20 MW data center for a confidential client in Illinois met a number of design challenges before construction even began.

Designed in Autodesk Revit 2013, the two-story data center was originally the site of an old manufacturing facility. Coupled with the owner’s building requirements, this created a few challenges to the data center’s electrical distribution system design. Here’s a look at how Environmental Systems Design, working together with the other members of the building team, was able to solve them.

Challenge No. 1: The transformer

In an effort to maintain consistency across its U.S. data centers, the undisclosed corporation likes to specify company-standard mechanical, electrical, plumbing (MEP), and fire protection equipment for all of its mission critical facilities. However, much of this equipment is designed for outdoor use, and because this particular facility has very limited outdoor space, significant adjustments had to be made for the transformer and switchgear equipment to work indoors.

For example, the heavy transformer couldn’t be placed on the raised floor designed for the data hall and electrical room space and wouldn’t be able to be removed from the building at the end of its useful life, as the 2500 kVA transformers each weigh approximately 16,000 lbs. Instead, the facility was designed with the intent of moving in the transformer prior to the raised floor construction. Coordinating with the architect, saw cuts were designed into the pre-cast panels on the side of the building to make it easier for the contractor to remove/replace the exterior wall to get the transformer out for future installations or replacement.

Additionally, because the liquid-filled transformers specified are typically used outdoors, special design considerations were needed for the electrical room to contain the fluid in the event of a leak. A 4-in. metal dam was constructed along the perimeter of the room to contain the liquid, while perforated raised-floor tiles were installed around the transformer to facilitate the flow of liquid to under the floor.

Challenge No. 2: Uniform design

The owner wanted a repeatable, scalable design for each of the eight data halls to both create uniformity across the facility and provide the ability to build out data halls as needed over time. However, due to existing building conditions, including the different quantity and compact nature of the structural columns on the building’s first and second floors, an offsite modular construction design was eliminated.

Instead, the solution was to bring each component of the mechanical and electrical systems into the facility individually and build out the data halls one at a time as identically as possible.

Challenge No. 3: Medium-voltage equipment

Because the switchgear and transformers were located inside the building, medium-voltage (MV) feeders were routed throughout. The MV system itself was daisy-chained so it had to be installed and commissioned in its entirety when the first of the eight data halls were installed.

The active MV system presents a potential risk to workers during construction. Therefore, the MV feeders and conduit were routed through the ceiling of the first floor for safety, stubbing back up through the second floor slab and directly into the equipment. The feeders for the first floor equipment were routed similarly under the first floor slab. Because the eight data halls will be built out over time, this technique permits construction on the floor without subjecting workers to the active feeders.

Challenge No. 4: Switchgear and metering equipment

The utility metering was pole-mounted on the site of the corporate data center. Courtesy: ESDWith very limited space for outdoor equipment, there wasn’t enough room for the utility’s 34.5 kV ground-level switchgear and metering. In addition, this equipment has not been fully vetted for the application and was seen as a risk by the owner. The only option was for the utility’s switchgear and metering to be pole mounted. This meant that the site’s 20 poles had to be spaced 20 ft from each other, taking up 400 ft of linear space on a site with little outdoor area.

Data center vital stats

Utility service: 2N, or two separate utility sources/feeders, one general source and the second as backup. The switchgear is daisy-chained together, creating a connection from one switchgear to another down the line so that the power can feed into one switchgear, back out and into the other, rather than having multiple connections to the site.

Backup generators: N+1 redundant swing generator. While each of the eight data halls has its own backup generator, another redundant swing generator for every two to three halls was designed as well, providing additional backup (a total of four swing generators in all). This provides an extra level of redundancy without the cost of providing an additional backup for each generator.

UPS system and distribution (2N): Two sides to the electrical system were designed, where each side is a mirror of the other. The benefit of the 2N system topology allows for maintenance or a fault to occur on one of the sides, while still maintaining a completely active data center. 


Adam Brendamour is an associate and electrical engineer with experience in data center, low-voltage technology, and tenant office design. Addam Friedl is senior vice president and mission critical facilities practice leader, and has experience in data center strategy, design, implementation, and operations. They are both in Environmental Systems Design’s Chicago office.  



No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2013 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Leaders Under 40 program features outstanding young people who are making a difference in manufacturing. View the 2013 Leaders here.
The new control room: It's got all the bells and whistles - and alarms, too; Remote maintenance; Specifying VFDs
2014 forecast issue: To serve and to manufacture - Veterans will bring skill and discipline to the plant floor if we can find a way to get them there.
2013 Top Plant: Lincoln Electric Company, Cleveland, Ohio
Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Plant Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.

Bring focus to PLC programming: 5 things to avoid in putting your system together; Managing the DCS upgrade; PLM upgrade: a step-by-step approach
Balancing the bagging triangle; PID tuning improves process efficiency; Standardizing control room HMIs
Commissioning electrical systems in mission critical facilities; Anticipating the Smart Grid; Mitigating arc flash hazards in medium-voltage switchgear; Comparing generator sizing software

Annual Salary Survey

Participate in the 2013 Salary Survey

In a year when manufacturing continued to lead the economic rebound, it makes sense that plant manager bonuses rebounded. Plant Engineering’s annual Salary Survey shows both wages and bonuses rose in 2012 after a retreat the year before.

Average salary across all job titles for plant floor management rose 3.5% to $95,446, and bonus compensation jumped to $15,162, a 4.2% increase from the 2010 level and double the 2011 total, which showed a sharp drop in bonus.

2012 Salary Survey Analysis

2012 Salary Survey Results

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.