Can a gasoline-diesel blend deliver cleaner, more efficient engines?

Tests using a combination of diesel and gasoline fuels to power internal combustion engines achieve extremely high thermal efficiency, 20% greater fuel efficiency, and could significantly reduce U.S. dependence on imported oil.

08/06/2009


Researchers at the University of Wisconsin-Madison are asking: What if an engine could be programmed to harvest the best properties of both gasoline and diesel fuel sources at once by blending the fuels within the combustion chamber itself?

The answer, based on tests by the University's engine research group (headed by Rolf Reitz), would be a diesel engine that produces significantly lower pollutant emissions than conventional engines, with an average of 20% greater fuel efficiency as well.

These dramatic results came from a technique Reitz describes as "fast-response fuel blending," in which an engine's fuel injection is programmed to produce the optimal gasoline-diesel mix based on real-time operating conditions.

Under heavy-load operating conditions for a diesel truck, the fuel mix in Reitz's fueling strategy might be as high as 85% gasoline to 15% diesel; under lighter loads, the percentage of diesel would increase to a roughly 50-50 mix. Normally this type of blend wouldn't ignite in a diesel engine, because gasoline is less reactive than diesel and burns less easily. But in Reitz's strategy, just the right amount of diesel fuel injections provides the kick-start for ignition.

Reitz describes his strategy as "[changing] the fuel properties [of each] by blending the two fuels within the combustion chamber to precisely control the combustion process, based on when and how much diesel fuel is injected."

"Two remarkable things happen in the gasoline-diesel mix," Reitz says:

  1. The engine operates at much lower combustion temperatures because of the improved control-as much as 40% lower than conventional engines-which leads to far less energy loss from the engine through heat transfer.
  2. The customized fuel preparation controls the chemistry for optimal combustion. That translates into less unburned fuel energy lost in the exhaust, and fewer pollutant emissions being produced by the combustion process.

In addition, the system can use relatively inexpensive low-pressure fuel injection (commonly used in gasoline engines), instead of the high-pressure injection required by conventional diesel engines.

Development of the blending strategy was guided by advanced computer simulation models. These computer predictions were then put to the test using a Caterpillar heavy-duty diesel engine at the University's Engine Research Center.

The best results achieved 53% thermal efficiency in the experimental test engine. According to Reitz, this efficiency exceeds even the most efficient diesel engine currently in the world-a massive turbocharged two-stroke used in the maritime shipping industry, which has 50% thermal efficiency.

"For a small engine to even approach these massive engine efficiencies is remarkable," Reitz says. "Even more striking, the blending strategy could also be applied to automotive gasoline engines, which usually average a much lower 25% thermal efficiency. Here, the potential for fuel economy improvement would even be larger than in diesel truck engines."

Thermal efficiency is defined by the percentage of fuel that is actually devoted to powering the engine, rather than being lost in heat transfer, exhaust or other variables.

The big-picture implications for reduced oil consumption are even more compelling, Reitz says. The United States consumes about 21 million barrels of oil per day, about 65% (13.5 million barrels) of which is used in transportation. If this new blended fuel process could convert both diesel and gasoline engines to 53% thermal efficiency from current levels, the nation could reduce oil consumption by 4 million barrels per day, or one-third of all oil destined for transportation.

"That's roughly the amount that we import from the Persian Gulf," says Reitz.

The work is funded by DOE and the College of Engineering Diesel Emissions Reduction Consortium at the University, which includes 24 industry partners.

Read these other Control Engineering articles related motor efficiency:

- Edited by David Greenfield , editorial director
Control Engineering Sustainable Engineering
News Desk




No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2013 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
The true cost of lubrication: Three keys to consider when evaluating oils; Plant Engineering Lubrication Guide; 11 ways to protect bearing assets; Is lubrication part of your KPIs?
Contract maintenance: 5 ways to keep things humming while keeping an eye on costs; Pneumatic systems; Energy monitoring; The sixth 'S' is safety
Transport your data: Supply chain information critical to operational excellence; High-voltage faults; Portable cooling; Safety automation isn't automatic
Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Plant Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.

Maintaining low data center PUE; Using eco mode in UPS systems; Commissioning electrical and power systems; Exploring dc power distribution alternatives
Synchronizing industrial Ethernet networks; Selecting protocol conversion gateways; Integrating HMIs with PLCs and PACs
Why manufacturers need to see energy in a different light: Current approaches to energy management yield quick savings, but leave plant managers searching for ways of improving on those early gains.

Annual Salary Survey

Participate in the 2013 Salary Survey

In a year when manufacturing continued to lead the economic rebound, it makes sense that plant manager bonuses rebounded. Plant Engineering’s annual Salary Survey shows both wages and bonuses rose in 2012 after a retreat the year before.

Average salary across all job titles for plant floor management rose 3.5% to $95,446, and bonus compensation jumped to $15,162, a 4.2% increase from the 2010 level and double the 2011 total, which showed a sharp drop in bonus.

2012 Salary Survey Analysis

2012 Salary Survey Results

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.