Can a gasoline-diesel blend deliver cleaner, more efficient engines?

Tests using a combination of diesel and gasoline fuels to power internal combustion engines achieve extremely high thermal efficiency, 20% greater fuel efficiency, and could significantly reduce U.S. dependence on imported oil.

08/06/2009


Researchers at the University of Wisconsin-Madison are asking: What if an engine could be programmed to harvest the best properties of both gasoline and diesel fuel sources at once by blending the fuels within the combustion chamber itself?

The answer, based on tests by the University's engine research group (headed by Rolf Reitz), would be a diesel engine that produces significantly lower pollutant emissions than conventional engines, with an average of 20% greater fuel efficiency as well.

These dramatic results came from a technique Reitz describes as "fast-response fuel blending," in which an engine's fuel injection is programmed to produce the optimal gasoline-diesel mix based on real-time operating conditions.

Under heavy-load operating conditions for a diesel truck, the fuel mix in Reitz's fueling strategy might be as high as 85% gasoline to 15% diesel; under lighter loads, the percentage of diesel would increase to a roughly 50-50 mix. Normally this type of blend wouldn't ignite in a diesel engine, because gasoline is less reactive than diesel and burns less easily. But in Reitz's strategy, just the right amount of diesel fuel injections provides the kick-start for ignition.

Reitz describes his strategy as "[changing] the fuel properties [of each] by blending the two fuels within the combustion chamber to precisely control the combustion process, based on when and how much diesel fuel is injected."

"Two remarkable things happen in the gasoline-diesel mix," Reitz says:

  1. The engine operates at much lower combustion temperatures because of the improved control-as much as 40% lower than conventional engines-which leads to far less energy loss from the engine through heat transfer.
  2. The customized fuel preparation controls the chemistry for optimal combustion. That translates into less unburned fuel energy lost in the exhaust, and fewer pollutant emissions being produced by the combustion process.

In addition, the system can use relatively inexpensive low-pressure fuel injection (commonly used in gasoline engines), instead of the high-pressure injection required by conventional diesel engines.

Development of the blending strategy was guided by advanced computer simulation models. These computer predictions were then put to the test using a Caterpillar heavy-duty diesel engine at the University's Engine Research Center.

The best results achieved 53% thermal efficiency in the experimental test engine. According to Reitz, this efficiency exceeds even the most efficient diesel engine currently in the world-a massive turbocharged two-stroke used in the maritime shipping industry, which has 50% thermal efficiency.

"For a small engine to even approach these massive engine efficiencies is remarkable," Reitz says. "Even more striking, the blending strategy could also be applied to automotive gasoline engines, which usually average a much lower 25% thermal efficiency. Here, the potential for fuel economy improvement would even be larger than in diesel truck engines."

Thermal efficiency is defined by the percentage of fuel that is actually devoted to powering the engine, rather than being lost in heat transfer, exhaust or other variables.

The big-picture implications for reduced oil consumption are even more compelling, Reitz says. The United States consumes about 21 million barrels of oil per day, about 65% (13.5 million barrels) of which is used in transportation. If this new blended fuel process could convert both diesel and gasoline engines to 53% thermal efficiency from current levels, the nation could reduce oil consumption by 4 million barrels per day, or one-third of all oil destined for transportation.

"That's roughly the amount that we import from the Persian Gulf," says Reitz.

The work is funded by DOE and the College of Engineering Diesel Emissions Reduction Consortium at the University, which includes 24 industry partners.

Read these other Control Engineering articles related motor efficiency:

- Edited by David Greenfield , editorial director
Control Engineering Sustainable Engineering
News Desk




No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
2016 Product of the Year; Diagnose bearing failures; Asset performance management; Testing dust collector performance measures
Safety for 18 years, warehouse maintenance tips, Ethernet and the IIoT, GAMS 2016 recap
2016 Engineering Leaders Under 40; Future vision: Where is manufacturing headed?; Electrical distribution, redefined
SCADA at the junction, Managing risk through maintenance, Moving at the speed of data
Safety at every angle, Big Data's impact on operations, bridging the skills gap
The digital oilfield: Utilizing Big Data can yield big savings; Virtualization a real solution; Tracking SIS performance
Applying network redundancy; Overcoming loop tuning challenges; PID control and networks
Driving motor efficiency; Preventing arc flash in mission critical facilities; Integrating alternative power and existing electrical systems
Package boilers; Natural gas infrared heating; Thermal treasure; Standby generation; Natural gas supports green efforts

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
This article collection contains several articles on the vital role of plant safety and offers advice on best practices.
This article collection contains several articles on the Industrial Internet of Things (IIoT) and how it is transforming manufacturing.
This article collection contains several articles on strategic maintenance and understanding all the parts of your plant.
click me