Building envelope: Testing and commissioning best practices

Due to the increased interest in high-performance buildings, more attention is being paid to how envelope assemblies affect interior comfort and energy performance.

03/26/2013


Figure 1: A typical wall assembly includes exterior cladding, a water channel layer, air barrier, vapor barrier, and an insulation barrier. Courtesy: NEBB and CCJM EngineersTraditionally, building envelopes have been commissioned by architectural inspection using punch lists for tracking needed corrections. Due to the increased interest in high-performance buildings, more attention is being paid to how envelope assemblies affect interior comfort and energy performance. The traditional contractor’s quality process has not been effectively used on building envelopes due to the fact that the assemblies are field built by multiple contractors at various times during the construction process. The building envelope consists of an exterior cladding, water channel layer, air barrier, vapor barrier, and an insulation barrier, each of which must be installed correctly without holes or voids in any of the layers to provide the intended performance (see Figure 1).

To overcome the lack of effective commissioning of these envelope assemblies, organizations like the National Environmental Balancing Bureau (NEBB) have begun to use the technical commissioning process on building envelopes with improved success. The technical commissioning process uses the expert commissioning provider process, instead of the contractor quality process, to achieve these results, and uses both testing of the envelope components and installation inspections.

To assist in the commissioning process of building envelopes, the industry has begun to adopt envelope testing standards. Standards have been developed for air intrusion, water intrusion, and thermal intrusion, but have not been widely used.

Air intrusion testing is the done by pressurizing and de-pressurizing the space and measuring the leakage at an elevated building pressure approximately 12 to 15 times normal building operating pressure. This is most effective when applied to whole buildings rather than individual assemblies. These tests find and identify leaks that when repaired provide a higher level of energy efficiency and comfort.

Water intrusion testing is done by spraying water against windows, doors, and wall assemblies while the building is under negative pressure to find any water leaks in those assemblies. This is most effective when applied to single transitional elements such as window/wall or door/wall transitions or wall-to-roof or wall-to-footing transitions. Roofs also can be tested by spraying or flooding roofs and then investigating the roof system for leaks by thermal or conductance measurements or observations. Flooding roofs is not best practice due to the possibility of damage to the structure or roof elements.

Thermal intrusion testing is done by performing thermal imaging of the envelope components when under a temperature difference of at least 15 F or greater. These images will indicate areas of excess thermal intrusion in wall or roof areas and can indicate the presence of thermal bridging of structural elements and also the presence of air leaks when the building is under test pressure.

Testing standards

Most testing standards were developed for residential construction and are being updated to be used on commercial and industrial buildings. The most successful standard to date is the U.S. Army Corps of Engineers Air Leakage Test Protocol for Building Envelopes, which is beginning to be used for new military structures. This standard was based upon ASTM E 779, which is also being updated to meet present technology and standards. There are many ASTM standards that apply to air leakage, water leakage, and thermal intrusion testing. Most of them are geared for a specific assembly or construction type, making application of these standards to commercial buildings very confusing. This has led to just a few highly experienced firms performing these services at very high costs. The lack of expert firms and the lack of understanding of these standards have limited the availability and economy of envelope testing in the construction industry.

Mandating that all military buildings be tested will require many more qualified testing firms and will require that the testing standards be easier to understand and apply to commercial building envelopes. To this end, the Air Barrier Association of America created a working group to assist the U.S. Army Corps of Engineers in updating its standard, which was completed in 2011. To help train for and commercialize these testing services, several organizations—including NEBB—have developed training and certification programs for building envelope testing, allowing more firms to enter the market and lower the total cost of envelope testing.          

So how does envelope performance testing get applied to a commercial building? First, the designer of the building envelope must specify the acceptable leakage rates for air and water and thermal intrusion for the building under design. This sounds simple enough but turns out to be the most difficult part. For water it is pretty simple—none is the right answer—but for air and thermal, it is not so simple.

Thermal intrusion performance presents a trade-off between envelope mass and material thermal resistance versus daylight and views through glazed openings. Higher thermal resistance of the entire envelope can be achieved with smaller areas of glazing, but without adequate glazing, natural light and views are affected. So for thermal performance, there is no right factor to be applied. It is the task of the designer to provide a balanced compromise of design once optimization of building orientation and dynamic light/shade systems have been introduced.


<< First < Previous 1 2 Next > Last >>

SIVA , AL, India, 04/21/13 11:41 AM:

excellent
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
2016 Engineering Leaders Under 40; Future vision: Where is manufacturing headed?; Electrical distribution, redefined
Strategic outsourcing delivers efficiency; Sleeve bearing clearance; Causes of water hammer; Improve air quality; Maintenance safety; GAMS preview
World-class maintenance: The three keys to success - Deploy people, process and technology; 2016 Lubrication Guide; Why hydraulic systems get hot
Flexible offshore fire protection; Big Data's impact on operations; Bridging the skills gap; Identifying security risks
The digital oilfield: Utilizing Big Data can yield big savings; Virtualization a real solution; Tracking SIS performance
Getting to the bottom of subsea repairs: Older pipelines need more attention, and operators need a repair strategy; OTC preview; Offshore production difficult - and crucial
Applying network redundancy; Overcoming loop tuning challenges; PID control and networks
Driving motor efficiency; Preventing arc flash in mission critical facilities; Integrating alternative power and existing electrical systems
Package boilers; Natural gas infrared heating; Thermal treasure; Standby generation; Natural gas supports green efforts

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
This article collection contains several articles on the vital role that compressed air plays in manufacturing plants.
This article collection contains several articles on the Industrial Internet of Things (IIoT) and how it is transforming manufacturing.
This article collection contains several articles on strategic maintenance and understanding all the parts of your plant.
click me