Brushless dc motors: More power from a smaller package

Today’s brushless dc motors and gearmotors combine many of the best features of both ac and dc drive systems. Just like ac motors, brushless dc motors eliminate brush maintenance, dust and brush-generated electromagnetic interference.

04/15/2008


Today’s brushless dc motors and gearmotors combine many of the best features of both ac and dc drive systems. Just like ac motors, brushless dc motors eliminate brush maintenance, dust and brush-generated electromagnetic interference. In addition, brushless dc motors provide a much wider speed range than inverter-driven ac motors. Brushless dc motors also run more quietly than their brush-type counterparts. Moreover, brushless motor construction makes the motors more thermally efficient, resulting in greater power from a smaller package.

Taken together, these benefits equate to longer life for a brushless motor than for a comparable permanent magnet dc motor. Compared to inverter-driven ac motors, brushless dc motors provide the same long-standing performance advantages of their brush-type counterparts:

  • Higher starting torque Predictable performance (a linear speed-torque curve)

  • Wider speed range

  • Ability to run from a wide range of power supply voltages.

    • Because brushless dc motors are constructed with magnets, bearings, laminations, shields and processes similar to many widely available PMDC motors, they typically compare favorably in cost to PMDC motors. With the cost of controls continuing to go down, some OEMs are even finding it cost effective to swap brushless dc systems for older brush-type designs (see Brushless dc motors become increasingly common).

      Designers are also increasingly taking advantage of the special performance capabilities inherent in the brushless dc design to substitute them for more costly high-end servomotors. Inverter-driven ac motors have also been used to replace older brush-type designs. However they lack the wide speed range of brushless dc motors.

      Hybrid of ac, dc designs

      AC induction motors were the earliest motors to be commercially available. Typically, these motors have cast aluminum rotors and windings on the outside that induce current in the rotor to create the electromagnetic fields necessary for rotor movement. As electronics and magnet technology progressed, brush-type PMDC motors appeared. These motors reverse the design of ac motors %%MDASSML%% the windings are on the rotor (called the armature) and permanent magnets or field windings are on the outside.

      The brushes are pieces of carbon-copper composite graphite that rub on a portion of the rotor, called the commutator, to electrically connect it to the power source. The commutator segments are located so that as the rotor turns, current flows in the proper direction in the rotor winding to keep the motor going in the desired direction.

      Brushless dc motors are a combination of the two. Winding construction in a brushless dc motor is similar to that of a three-phase ac motor. The major difference between ac and brushless dc motors is in rotor construction: the rotor consists of magnetized permanent magnet segments. In addition, the brushless dc motor requires position sensors such as encoders or Hall-effect sensor devices. These sensors provide electrical signals the control uses to sequentially energize the three-phase windings to produce maximum rotor torque and desired direction of rotation.

      Using brushless gearmotors and motors

      Motion-control applications run the gamut from fans to machine tools. The best type of motor is often obvious. For example, an inexpensive ac induction motor normally drives a fixed-speed fan. Conversely, a high-speed profiler normally requires a high-performance multi-axis servo control system. Brushless dc motors can often be used for applications that fall somewhere between those two extremes. In general, brushless dc motors can frequently be used for velocity and positioning applications.

      A velocity application is one in which the motor rotates to drive the load; the stopping position is not of major importance. Examples include fans, centrifuges and continuously-running conveyors. These applications often use conventional brushless dc motors because of their high-speed capability, high power relative to size and low maintenance.

      In a positioning application, the motor rotates to drive the load from point A to point B. Examples include garage door openers, supermarket check stands, parts elevators and pick-and-place robots. The first two examples often use conventional ac motors and limit switches or photoelectric sensors to control stopping position. Position tolerance is usually around

      With the recent development of cost-effective brushless dc motors with integrated drive electronics, and with the cost of brushless dc controllers continually falling, brushless dc motors will appear in more applications that once may have used conventional PMDC gearmotors, brush-type servomotors and ac inverter-duty motors.


      <table ID = 'id2662529-0-table' CELLSPACING = '0' CELLPADDING = '2' WIDTH = '100%' BORDER = '0'><tbody ID = 'id2662598-0-tbody'><tr ID = 'id2662600-0-tr'><td ID = 'id2662603-0-td' CLASS = 'table' STYLE = 'background-color: #EEEEEE'> Author Information </td></tr><tr ID = 'id2662611-3-tr'><td ID = 'id2662613-3-td' CLASS = 'table'> Mike Marhoefer is the manager of brushless dc technologies for Bodine Electric Co. An electronics engineer, Marhoefer joined the company in 1978 as a member of the research and development department. Recent projects include integration of the brushless dc gearmotor with drive and encoder electronics. </td></tr></tbody></table>

      Hall effect

      The Hall effect was discovered by physicist Dr. Edwin Hall in 1879 while he was a doctoral candidate at Johns Hopkins University in Baltimore. The Hall effect principle states that when a current-carrying conductor is placed into a magnetic field, a voltage will be generated perpendicular to both the current and the field.

      Source: Honeywell, Micro Switch Div.



No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
Strategic outsourcing delivers efficiency; Sleeve bearing clearance; Causes of water hammer; Improve air quality; Maintenance safety; GAMS preview
World-class maintenance: The three keys to success - Deploy people, process and technology; 2016 Lubrication Guide; Why hydraulic systems get hot
Your leaks start here: Take a disciplined approach with your hydraulic system; U.S. presence at Hannover Messe a rousing success
Flexible offshore fire protection; Big Data's impact on operations; Bridging the skills gap; Identifying security risks
The digital oilfield: Utilizing Big Data can yield big savings; Virtualization a real solution; Tracking SIS performance
Getting to the bottom of subsea repairs: Older pipelines need more attention, and operators need a repair strategy; OTC preview; Offshore production difficult - and crucial
Applying network redundancy; Overcoming loop tuning challenges; PID control and networks
Putting COPS into context; Designing medium-voltage electrical systems; Planning and designing resilient, efficient data centers; The nine steps of designing generator fuel systems
Package boilers; Natural gas infrared heating; Thermal treasure; Standby generation; Natural gas supports green efforts

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
This article collection contains several articles on the vital role that compressed air plays in manufacturing plants.
This article collection contains several articles on the Industrial Internet of Things (IIoT) and how it is transforming manufacturing.
This article collection contains several articles on strategic maintenance and understanding all the parts of your plant.
click me