Boilers: Types, applications, and efficiencies

03/22/2013


Applying condensing hot water boilers

Condensing water boilers are increasingly desired by many building owners. This is due to the very high efficiency of these devices. Typical thermal efficiencies range from 90% to 98%. Many building owners are asking their consultants to use these devices for new, replacement, and retrofit applications. However, this can present a challenge for all of these applications unless the consulting engineer/designer and the owner fully understand the limits of using a boiler designed for condensing temperatures.

Condensing boilers are low water temperature devices when applied in the condensing temperature range. (Note: There is at least one boiler manufacturer that is currently advertising a condensing boiler with 160 F minimum return water temperature.) In order for the flue gases to be in the condensing temperature range to achieve the maximum heat transfer of the fuel energy to the water, the supply water temperature is ≤130 F with return water temperatures as low as 80 F. As with any counter-flow heat exchange device, the leaving temperature of the heated fluid (water in this case) cannot be greater than the leaving temperature of the hot side or heating medium (combusted fuel in this case). The lower the fuel gas temperature, the more efficient the boiler becomes as more heat is extracted from the combustion gases.

Figure 4: Cast iron, straight water tube, and fire tube boilers require special consideration to avoid damaging the boiler. A high-pressure 180,000 lbs/hr steam plant uses a multiple fire tube boiler.The drawback of this low water temperature is applying these in a replacement or retrofit application. Due to the low supply water temperature, most heating coils that were selected at a higher entering water temperature will not perform well at this lower water temperature. This is the case with many replacement and retrofit projects. Therefore, thoughtful consideration must be given at a minimum to determine the performance of these older existing coils with the lower water temperature. Replacement of at least some of the coils will be necessary. This is especially true of heating coils in small zone devices such as variable volume terminal boxes, cabinet unit heaters, finned tube radiation, and convectors as these devices are usually designed for 180 to 200 F entering water temperature.

However, condensing boilers can be applied in existing systems designed for higher water temperatures if the boilers are applied in a hybrid condensing/noncondensing design. This allows the boilers to function in the condensing range during the partial heating load periods (when condensing water temperatures can be used) while allowing the boiler to produce noncondensing supply water temperatures (typically ˃130 F) during the higher heating load periods. The boilers will then function at a lower efficiency, but greater water temperature at a reduced overall heating output. A word of caution is required related to boiler flue material: The boiler flue material must be capable of withstanding the corrosive effects of condensed flue gases as well has flue gas temperatures produced when operating out of the condensing temperature range.

New heating water systems using condensing boilers must take into account the requirement for larger than “normal” heating coils required in all air handling equipment. Variable air terminal boxes and finned tube radiation must have the lower water temperature accounted for in the sizing selection process. Hot water coils in terminal units, in this writer’s experience, are a minimum of two rows and typically 3 to 4 rows to provide more surface area for heat exchange.

Modular condensing boilers are almost always applied in a primary-secondary piping arrangement with each boiler requiring a dedicated return water pump to ensure proper flow within the boiler. As previously mentioned, the use of automatic flow balancing valves should be used for each boiler in the supply water (leaving side) piping to further help ensure proper flow throughout the operating flow and pressure range of the entire heating water system.



No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2013 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Leaders Under 40 program features outstanding young people who are making a difference in manufacturing. View the 2013 Leaders here.
The new control room: It's got all the bells and whistles - and alarms, too; Remote maintenance; Specifying VFDs
2014 forecast issue: To serve and to manufacture - Veterans will bring skill and discipline to the plant floor if we can find a way to get them there.
2013 Top Plant: Lincoln Electric Company, Cleveland, Ohio
Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Plant Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.

Why manufacturers need to see energy in a different light: Current approaches to energy management yield quick savings, but leave plant managers searching for ways of improving on those early gains.
Electric motor power measurement and analysis: Understand the basics to drive greater efficiency; Selecting the right control chart; Linear position sensors gain acceptance
Protecting standby generators for mission critical facilities; Selecting energy-efficient transformers; Integrating power monitoring systems; Mitigating harmonics in electrical systems

Annual Salary Survey

Participate in the 2013 Salary Survey

In a year when manufacturing continued to lead the economic rebound, it makes sense that plant manager bonuses rebounded. Plant Engineering’s annual Salary Survey shows both wages and bonuses rose in 2012 after a retreat the year before.

Average salary across all job titles for plant floor management rose 3.5% to $95,446, and bonus compensation jumped to $15,162, a 4.2% increase from the 2010 level and double the 2011 total, which showed a sharp drop in bonus.

2012 Salary Survey Analysis

2012 Salary Survey Results

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.