Boilers: Types, applications, and efficiencies

03/22/2013


Steam boilers

Figure 5: This low-pressure Scotch marine boiler has a dry-back design. Steam generating boilers require large volumes for the phase change of water to steam to reduce operational issues related to small water to steam interface area.Steam boilers are applied in many applications for building heating and many forms of process heating and humidification systems. The use of steam boilers has dropped in recent years, but they still remain the choice method of distribution energy for heating in large facilities such as hospitals, campuses, and some downtown areas of major cities.  

Steam boilers can be classified in several ways; however, they are either low pressure (15 psig or less) or high pressure (greater than 15 psig). They can be fire-tube Scotch marine with wet- or dry-back design, cast iron, or water tube design. Steam generating boilers require large volumes for the phase change of water to steam to reduce operational issues related to small water to steam interface area.

Steam boilers also require proper water chemistry for proper operation. Boiler feed water/makeup must be low in hardness (typically 2 grains/lb or less) with low total dissolve solids in order to reduce water surface tension. Water surface tension is a primary cause of water spouting within the boiler’s water to steam interface area. Increased “water spouting” can result in rapid fluctuation of the water level in the boiler, which is indicative of water carryover from the steam generation volume of the boiler into the steam piping header. Water carryover from the boiler to the steam header usually leads to the boiler shutting down on its low water safety. If the steam header becomes partially or fully water-logged, complete shutdown and drainage of the system is required.

Steam boilers and steam piping systems are large thermal flywheels. The system requires a substantial start-up time for boiler and piping system warmup. Large piping system usually require warmup in multiple sections to avoid or minimize vacuum (sub-atmospheric) pressure forming during the warmup process due to steam condensing back to water. Steam systems cannot react to rapidly changing system demands if the boilers are staged on from a cold state. Therefore, steam boiler staging is based upon weather, steam header pressure, and the boiler operator’s experience rather than the staging controls used in hot-water boiler systems.

While steam is an extremely effective method of transporting thermal energy (considering the latent heat of vaporization) and requires no pumping on the vapor side of the system, steam boiler systems are inherently inefficient. Recent experience indicates the natural gas to steam plant output (thermal efficiency) to range from 55% to 65% based on measured usage data for an 180,000 lb/hr plant.

 

 

Summary

Boilers and water-based heating systems are available in a wide variety of types and configurations. Determining the boiler type for a specific application is the responsibility of the consulting engineer in conjunction with the owner or operator of the facility. Applying the boiler in most efficient configuration is the responsibility of the consulting engineer.

The table of boiler types included in this article is not intended to be complete, but only a reference to basic types and configurations available. Fabrication materials vary between manufacturers along with patented designs.

The most efficiently designed boiler-based system uses the most efficient boiler and system configuration for the application. Controlling the system to meet the system demands is the major key to overall efficiency. Using the simplest but most effective boiler plant/system staging controls with the feedback of building heating requirements on a minute-by-minute basis is the key to optimizing any hydronic heating system’s efficiency. System feedback input includes continuous monitoring of flow requirements and supply-return water temperature differential, using this data to calculate real-time requirements of the facility, and then making decisions on the staging of entire heating plant.

Variable primary-only boiler systems can be accomplished. However, this must be achieved with the input of the boiler manufacturer’s engineering/applications group. Special attention must be given to maintain minimum tube velocity required by the boiler manufacturer.

Condensing boilers offer the greatest energy efficiency if properly applied. Small terminal coils (such as terminal boxes, finned tube radiation, cabinet heater, etc.) are not designed for low temperature water. Therefore, special care must be used in selecting these coils. Condensing boilers can be applied to existing systems if proper precautions are realized by the consulting engineer and the facility owner/operator. If the existing system is to take full advantage of the efficiency potential of these boilers, every coil must be evaluated for performance at the lower water temperatures. The alternative is to apply these boilers with the proper controls to allow for noncondensing water temperatures during peak heating periods. 


Michael E. Myers is senior mechanical engineering manager at WD Partners in Dublin, Ohio, where he is responsible for managing and directing the mechanical engineering division. He has more than 33 years of experience in HVAC, plumbing, and fire protection engineering. He is a former ASHRAE distinguished lecturer, former ASHRAE chapter president and a previously published co-author on HVAC design.


<< First < Previous 1 2 3 4 Next > Last >>

No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2013 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
The true cost of lubrication: Three keys to consider when evaluating oils; Plant Engineering Lubrication Guide; 11 ways to protect bearing assets; Is lubrication part of your KPIs?
Contract maintenance: 5 ways to keep things humming while keeping an eye on costs; Pneumatic systems; Energy monitoring; The sixth 'S' is safety
Transport your data: Supply chain information critical to operational excellence; High-voltage faults; Portable cooling; Safety automation isn't automatic
Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Plant Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.

Maintaining low data center PUE; Using eco mode in UPS systems; Commissioning electrical and power systems; Exploring dc power distribution alternatives
Synchronizing industrial Ethernet networks; Selecting protocol conversion gateways; Integrating HMIs with PLCs and PACs
Why manufacturers need to see energy in a different light: Current approaches to energy management yield quick savings, but leave plant managers searching for ways of improving on those early gains.

Annual Salary Survey

Participate in the 2013 Salary Survey

In a year when manufacturing continued to lead the economic rebound, it makes sense that plant manager bonuses rebounded. Plant Engineering’s annual Salary Survey shows both wages and bonuses rose in 2012 after a retreat the year before.

Average salary across all job titles for plant floor management rose 3.5% to $95,446, and bonus compensation jumped to $15,162, a 4.2% increase from the 2010 level and double the 2011 total, which showed a sharp drop in bonus.

2012 Salary Survey Analysis

2012 Salary Survey Results

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.