Big data can drive big energy savings

Advanced analytic technologies enable “virtual audits,” enhancing manufacturers’ ability to pinpoint—and reverse—energy waste on plant floors.


Energy-management challenges: A recent study by LNS Research identified the four top reasons manufacturers struggle to control energy costs on the factory floor. Courtesy: LinkCycleMost manufacturing managers understand the value of keeping close tabs on the amount of energy consumed in production processes. They know, for instance, that saving energy can improve a company’s competitive position by lowering its operating costs, keeping it in compliance with government regulations, and burnishing its image among environmentally conscious consumers.

However, many manufacturers still struggle to pinpoint exactly what parts of their factories are energy hogs. 

There are numerous reasons manufacturers find it difficult to accurately measure plant floor  energy use, but chief among them is a lack of adequate tools the accomplish the task. Fortunately for manufacturers, innovative technologies are emerging in other industries can be applied to energy management problems in industrial settings. More specifically, the answer to controlling consumption—and thus the cost—of energy on the plant floor lies in the Big Data revolution. 

Data science and innovative analytical algorithms are helping companies improve business operations by tapping into vast amounts of data stored in disparate systems and then leveraging previously unrealized data correlations. Big Data capabilities are empowering companies to quickly analyze massive amounts of data, driving improved operational decision making. Managers can more easily identify and diagnose operational problems. Then management can prescribe appropriate business decisions and actions. 

So how does all this apply to industrial energy management? Consider the top four energy management challenges confronting manufacturers, according to a recent survey of more than 100 executives conducted by LNS Research:

  • Energy metrics are not effectively measured
  • Disparate systems and data sources
  • Lack of culture supporting energy management
  • Lack of visibility into performance. 

Having visibility and detailed knowledge of ongoing energy consumption patterns at each machine or industrial process is the first critical step for initiating a systematic approach to industrial energy management, and improving a company’s competitive position. However, there are other factors hindering industrial energy management. 

Costly time lags  

Industrial environments are extremely complex. They are very technical and unique in their operations, organization and culture. No two factories, even within the same company making the same products, are alike. Product variations, inconsistent equipment and process efficiencies, unplanned downtime, preventive maintenance routines, and changing production schedules are facts of life. 

The two most common approaches to determining how much energy is used on factory floors are: 

  • Physical plant audits by energy engineers and auditors who may install temporary meters and data loggers, survey equipment and their power ratings, evaluate operating schedules and calculate energy use.
  • Installation of costly metering systems: this includes designing, tendering, procuring, installing, and configuring automated metering systems (which may require production interruptions). 

Traditional EM drawbacks: Traditional approaches to factory floor energy management are labor intensive, costly and take a long time to produce results. Courtesy: LinkCycleThe drawbacks with both traditional approaches include the extensive amount of time and labor they require, the need for large upfront capital investments, plus a lack of scalability across a single plant or enterprise.   

Plant audits capture energy metrics only for a limited time period, and are not directly correlated to production output and mix, which frequently change over time. The long duration of time necessary to perform and document plant audits or to deploy sub-metering solution projects can delay plant the initiation of energy-saving actions.

Manufacturing operations typically do not set aside separate budgets for energy efficiency. Energy management projects compete for funding against projects related to production efficiency, manufacturing yields, and quality. And the expected ROI for energy related projects is often more demanding than those tied to production. For these reasons and the perceived difficulty in quantifying ROI and indirect benefits (due to the lack of meaningful data), industrial energy management projects are difficult to get financed. 

New EM platforms: Energy management platforms based on new data analytics technologies are easy to use, produce fast results and can be scaled across an enterprise. Courtesy: LinkCycleIt’s a frustrating and costly closed-loop cycle. Without an intelligent energy management system, how can plant managers have the data to measure energy performance, know their significant energy uses (SEUs) and establish a baseline for improvement? How after energy conservation measures are implemented, can decision makers then verify the savings and the return on investment without the energy metrics? 

A new approach is needed to tackle this problem. That’s where Big Data comes in. To understand how this technology transfer can work, it’s important to remember that industrial energy costs go beyond electricity. They include the five components known as WAGES:

  • Water
  • Air
  • Gas
  • Electricity
  • Steam.

For commercial buildings, Big Data and energy analytic software as a service (SaaS) platforms are driving innovative energy management developments.  By analyzing readily accessible data sets – weather, GIS, and 15 minute or hourly interval electricity consumption – “Virtual” or “No Touch” Energy Audits aim to determine how a building is consuming energy. These software systems then provide end-use operational insights and recommendations for improvement without ever contacting the building itself.

First Fuel and Retroficiency, both Boston-area companies, are among the technology providers who are pioneering this science for commercial buildings.

These energy assessment tools are proving effective in helping corporate real estate managers accurately identify and target buildings by their energy efficiency potential. Capital can then be more effectively deployed to yield the optimal ROI across a property portfolio.

There are tremendous untapped opportunities in manufacturing data that is not being leveraged to drive reduced energy consumption. Data science and analytics are providing manufacturers with capabilities to pinpoint operational improvements and achieve savings on the factory floor. 

The Industrial Internet, the Internet of Things and Big Data are trends that manufacturers can no longer afford to ignore. The world is speeding in this direction and Big Data can provide manufacturers with business intelligence, analysis and relevant energy metrics. This intelligence can help manufacturers overcome the challenges associated with implementing energy conservation programs due to an inability to get their hands on meaningful data. 

Click to the next page to see a smart energy graphic and read about manufacturing pilot programs and other potential applications. 

<< First < Previous Page 1 Page 2 Next > Last >>

The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
A new approach to the Skills Gap; Community colleges may hold the key for manufacturing; 2017 Engineering Leaders Under 40
Doubling down on digital manufacturing; Data driving predictive maintenance; Electric motors and generators; Rewarding operational improvement
2017 Lubrication Guide; Software tools; Microgrids and energy strategies; Use robots effectively
The cloud, mobility, and remote operations; SCADA and contextual mobility; Custom UPS empowering a secure pipeline
Infrastructure for natural gas expansion; Artificial lift methods; Disruptive technology and fugitive gas emissions
Mobility as the means to offshore innovation; Preventing another Deepwater Horizon; ROVs as subsea robots; SCADA and the radio spectrum
Power system design for high-performance buildings; mitigating arc flash hazards
Research team developing Tesla coil designs; Implementing wireless process sensing
Commissioning electrical systems; Designing emergency and standby generator systems; Paralleling switchgear generator systems

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
The maintenance journey has been a long, slow trek for most manufacturers and has gone from preventive maintenance to predictive maintenance.
Featured articles highlight technologies that enable the Industrial Internet of Things, IIoT-related products and strategies to get data more easily to the user.
This digital report will explore several aspects of how IIoT will transform manufacturing in the coming years.
Maintenance Manager; California Oils Corp.
Associate, Electrical Engineering; Wood Harbinger
Control Systems Engineer; Robert Bosch Corp.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me