Best practices: Turbo-compressor control monitoring

Coverage of turbo-compressor surge and turbo-compressor condition monitoring tends to be popular, but topics related to turbo-compressor control can be just as vital. Here are some of the best products and practices used in the field.

04/22/2014


Literature on turbo-compressor surge and turbo-compressor condition monitoring tends to be popular, but topics related to turbo-compressor control have not seemed to draw that much attention. The best method of turbo-compressor control is one that provides the greatest efficiency for the desired level of controllability. An important concept is that regardless of arrangement of turbo-compressors, each compressor should have a control system that performs the anti-surge and required-control actions in a decoupled fashion without interactions. The general strategy is to first prevent any turbo-compressor from coming too close to the surge curve, and second, to operate any compressor as close as possible to the best efficiency point (BEP). 

Commonly used products and their functions:

Inlet throttle valve (ITV)

The “Inlet Throttle Valve (ITV)” capacity control method is still in use for small and non-critical compressors. This is often used for constant-speed turbo-compressors below 1.9 MW. These are usually fixed-speed electric-motor driven compressors. The simplest form of this control system is accomplished by controlling the discharge pressure of the compressor at a constant value. 

Inlet guide vane (IGV)

The variable geometry of compressor components can be used for the capacity control. The most common form is the inlet guide vanes (IGV). The IGV system gives pre-swirl to the flow entering turbo-compressors that can rotate and narrow the flow passage, allows capacity control of fixed-speed turbo-compressors.  

Variable-speed turbo-compressor

Achieving reasonable compressor efficiency at part-load operations requires a reduction in the compressor work input. A variable-speed operation is a mechanism that can allow the reduction in the compressor work input required to achieve a good efficiency at part-load. Operating a turbo-compressor with a variable-speed drive is a good option for most applications. The variable-speed operation is more effective in head reduction than in flow reduction creating a turbo-compressor map that sometimes does not allow efficient operation at low flow and high head conditions, needed for some applications. 

Variable-speed versus inlet guide vane (IGV)

Compressor applications with part-load conditions requiring a proportional relationship between flow and head show the largest benefit from the variable-speed operation. Compressor applications that require an almost constant head (with variable capacity) or an almost constant flow (with variable head) may not benefit much from the variable-speed operation. This is particularly correct for compressor applications that need relatively constant head and variable capacity. These machines often require full-speed compressor operation. 

Independent control loops 

On a low-flow demand, a compressor can be damaged by surge. On high-flow demand, there are usually driver limits. For example, electric-motor driven compressors can be damaged by excessive electric motor current. There is also choke limit (or “stonewall” limit). When a compressor is operating in the “choke” condition, the discharge pressure is no longer controllable. The discharge pressure can drop almost to the suction pressure for a slight increase in flow at a given speed or IGV position.

To prevent surge, in many small-size and medium-size compressors, a separate (independent) anti-surge loop is provided. When the surge controller becomes active (independently), this often interacts with the capacity control (such as an inlet throttle valve capacity control system) to cause unstable operation. The anti-surge controller can disturb the discharge pressure controller because the inlet throttle valve can affect both flow and pressure. Two loops acting simultaneously produce a sustained oscillation that is characteristic of physically-coupled, independently-controlled loops. 

Conclusion

Variable-speed compressors have the potential of substantially improving compressor part-load efficiency and have become the selected option for many applications. The application of variable-speed to some turbo-compressors may require additional knowledge of compressor behavior as well as testing and verifications. Variable-speed turbo-compressors can offer an excellent capacity control performance. 

Amin Almasi is a senior rotating equipment consultant in Australia. He is chartered professional engineer of Engineers Australia (MIEAust CPEng – Mechanical) and IMechE (CEng MIMechE) in addition to a M.Sc. and B.Sc. in mechanical engineering and RPEQ (Registered Professional Engineer in Queensland).

Edited by Jessica DuBois-Maahs, associate content manager, CFE Media, jdmaahs@cfemedia.com.

 



No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2013 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
The true cost of lubrication: Three keys to consider when evaluating oils; Plant Engineering Lubrication Guide; 11 ways to protect bearing assets; Is lubrication part of your KPIs?
Contract maintenance: 5 ways to keep things humming while keeping an eye on costs; Pneumatic systems; Energy monitoring; The sixth 'S' is safety
Transport your data: Supply chain information critical to operational excellence; High-voltage faults; Portable cooling; Safety automation isn't automatic
Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Plant Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.

Maintaining low data center PUE; Using eco mode in UPS systems; Commissioning electrical and power systems; Exploring dc power distribution alternatives
Synchronizing industrial Ethernet networks; Selecting protocol conversion gateways; Integrating HMIs with PLCs and PACs
Why manufacturers need to see energy in a different light: Current approaches to energy management yield quick savings, but leave plant managers searching for ways of improving on those early gains.

Annual Salary Survey

Participate in the 2013 Salary Survey

In a year when manufacturing continued to lead the economic rebound, it makes sense that plant manager bonuses rebounded. Plant Engineering’s annual Salary Survey shows both wages and bonuses rose in 2012 after a retreat the year before.

Average salary across all job titles for plant floor management rose 3.5% to $95,446, and bonus compensation jumped to $15,162, a 4.2% increase from the 2010 level and double the 2011 total, which showed a sharp drop in bonus.

2012 Salary Survey Analysis

2012 Salary Survey Results

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.