# Basic electronics: What is capacitance?

## A capacitor is a device capable of storing an electrical charge. Capacitance is a measure of the amount of the electrical charge a capacitor can store. Electrical current is the movement of electrons. Everything contains electrons, but unless they are moving, it's not electric current. It doesn't matter if the same electron that leaves the voltage source actually gets to "do the work," as long ...

01/10/2004

A capacitor is a device capable of storing an electrical charge. Capacitance is a measure of the amount of the electrical charge a capacitor can store.

Electrical current is the movement of electrons. Everything contains electrons, but unless they are moving, it's not electric current. It doesn't matter if the same electron that leaves the voltage source actually gets to "do the work," as long as it makes some other electron somewhere else move.

Simply, a capacitor is two conductors that are in close proximity, but not electrically connected. A material called a dielectric insulates the conductors. If one conductor is connected to a source of electrons such as the negative pole of a battery, those electrons can collect on that conductor. If another conductor is placed very close to the first, the surface electrons on it are pushed away because like charges repel each other, giving the second conductor a positive charge. If the circuit is completed by connecting the second conductor to the positive pole of the same battery, the repelled electrons can flow back into the battery. The resulting increased positive charge on the second conductor attracts more electrons to the surface of the first conductor, pulling them out of the battery. Current flows in the circuit, although no electrons cross the dielectric of the capacitor (Fig. 1).

Upon completion of the circuit, current flows momentarily β until the first conductor collects all the electrons it can hold. If it's a small conductor it can't hold very many electrons; its capacity for holding a charge β or capacitance β is small. Forming both conductors into plates increases surface area within the capacitor. The larger these plates, the longer the current will flow until they are full, because more electrons can be gathered on them. Their ability to hold a charge is higher.

The closer these plates are to each other, the more effect the electrons on the first plate will have on the electrons of the second plate. The negative charge on the first plate repels more electrons from the second plate, giving the second plate a higher positive charge. Also, the capacity to hold a charge is higher when plates are moved closer to each other, just as it is with larger plates. Conversely, separating the plates decreases the capacitance.

To increase capacitance, the plates are as big and as close together as possible, remembering that they must not touch electrically. If they touch, it's like a hole in a dam. All the charge stored on the first plate drains onto the second plate, and we end up with a fancy wire. Often the plates are made of sheets of foil, and the insulator can be some type of thin plastic such as Mylar. If these materials are rolled into a tube, a large surface area can be contained in a relatively small volume. The higher the voltage used to create the charge, the more possibility that an arc might occur, causing a short. For this reason, higher voltage capacitors must have thicker insulation, and are correspondingly larger in physical size.

## Quantifying capacitance

Capacitance is measured in farads (F). A 1-F capacitor would have 1 volt (V) across its plates when it is charged by 1 Coulomb of electricity. A Coulomb is the quantity of electric charge that passes any cross-section of a conductor in 1 sec when the current is maintained at 1 ampere (A). This amounts to approximately 6.25 quintillion, or 6.25 x 1018electrons. To put these abstract quantities into real-world perspective, 1 Coulomb is roughly the amount of electricity that flows through a 12-watt (W) automotive light bulb in 1 sec.

Fifty years ago, a 1-F capacitor would be physically too large to be practical, due to the materials available and the high voltages required in the circuits of the day. Speculations and exaggerations about the size of a 1-F capacitor ranged from the size of a can of tuna to a cube the size of a city block, depending on voltage rating. Today, with newer dielectric materials and decreasing voltage requirements, a useful 1-F capacitor can be smaller than a C-cell battery.

Capacitors in parallel increase the effective area of the plates and increase the total capacitance (Fig. 2). However, capacitors in series effectively move the plates further away from each other and decrease the ability to hold a charge (Fig. 3).

## Capacitors in ac circuits

In dc circuits, current flows until the plates of the capacitor are fully charged. If the polarity of the battery is reversed, the electrons flow to the other side of the capacitor, and there will be current flow again for a period of time. This is what happens to a capacitor in an ac circuit. Every time the polarity of the source voltage reverses, the current flow reverses. If the polarity reverses fast enough, the current flow is essentially unaffected by the presence of the capacitor in the circuit. This gives rise to the belief that capacitors block dc, but pass ac. This is essentially true for higher values of frequency and capacitance.

At any frequency, current flows in a capacitive circuit only until the plates of the capacitor are fully charged; it is the charging current that flows. When the plates are saturated with electrons, current flow ceases. In a dc circuit, obviously the frequency is zero. As the capacitor charges, the electron flow decreases. The opposition to the flow of current, or impedance, is at its highest.

As the frequency increases, the polarity reversal is more frequent, so the charging of the plates occurs for a shorter time. If the frequency is high enough, the amount of time for charging, and therefore the number of electrons collected on the plate, is so small that nearly full current flows for the whole period, because the plates never get fully charged. Theoretically, a capacitor at that frequency has such a low value of impedance that effectively it is not even there. Similarly, if the value of capacitance is high enough, the capacity to hold electrons is so high that the plates are never fully charged. Again, nearly full current flows for the whole period, and the impedance is so low that the capacitor is effectively out of the circuit.

## Summary

With this knowledge, the rules for using capacitors are:

• Wiring capacitors in parallel increases the area of the plates, allows holding a higher charge, and increases the capacitance.

• Wiring capacitors in series increases the effective distance between the plates, reduces the effect of one plate over the other, and reduces the capacitance.

• The higher the capacitance, the more time needed to charge the capacitor, and the lower the impedance.

• The higher the frequency, the lower the charging time, and the lower the impedance.

• Capacitors are used in electronic circuits, industrial equipment, and power management applications. They help provide smooth low-ripple dc when used in power supplies. They help eliminate unwanted signals in analog and digital circuits. They provide frequency-dependent operation to many electronic circuit designs. Capacitors are frequently used to provide power-factor correction, harmonic mitigation, and other power quality improvements.

The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
Doubling down on digital manufacturing; Data driving predictive maintenance; Electric motors and generators; Rewarding operational improvement
2017 Lubrication Guide; Software tools; Microgrids and energy strategies; Use robots effectively
Prescriptive maintenance; Hannover Messe 2017 recap; Reduce welding errors
The cloud, mobility, and remote operations; SCADA and contextual mobility; Custom UPS empowering a secure pipeline
Infrastructure for natural gas expansion; Artificial lift methods; Disruptive technology and fugitive gas emissions
Mobility as the means to offshore innovation; Preventing another Deepwater Horizon; ROVs as subsea robots; SCADA and the radio spectrum
Research team developing Tesla coil designs; Implementing wireless process sensing
Commissioning electrical systems; Designing emergency and standby generator systems; Paralleling switchgear generator systems
Natural gas engines; New applications for fuel cells; Large engines become more efficient; Extending boiler life

### Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. Itβs a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
The maintenance journey has been a long, slow trek for most manufacturers and has gone from preventive maintenance to predictive maintenance.
Featured articles highlight technologies that enable the Industrial Internet of Things, IIoT-related products and strategies to get data more easily to the user.
This digital report will explore several aspects of how IIoT will transform manufacturing in the coming years.
Maintenance Manager; California Oils Corp.
Associate, Electrical Engineering; Wood Harbinger
Control Systems Engineer; Robert Bosch Corp.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.

## Artificial intelligence can produce tangible process improvements

 Author Information Wendell Rice, Instrument and Controls Engineer, Parsons Infrastructure & Technology, Pasadena, CA, has been a controls engineer for more than 25 yr. He can be reached at 765-245-5357 or wendell.rice@parsons.com . Rice currently is assigned to a project in Newport, IN, to provide support for the U. S. Army's chemical weapons neutralization program.