Ball State University, Campus Wide Geothermal Conversion

Geothermal conversion and new district energy stations: Ball State University, Campus Wide Geothermal Conversion; MEP Associates, LLC


Location of north well field and District Energy Station North (Click to enlarge)Project name: Ball State University, Campus Wide Geothermal Conversion

Location: Muncie, Ind.

Firm name: MEP Associates, LLC

Project type, building type: Geothermal conversion and new district energy stations, school (college, university)

Project duration: 5 years

Project completion date: 2014

Project budget for mechanical, electrical, plumbing, fire protection engineering only: $6.5 million

Engineering challenges

Accurately identifying the campus thermal profile and evaluating the current building systems in order to determine correct sizing of the well fields and the new distribution system; phasing and transformation of an existing campus system to a new geothermal Location of south well field and District Energy Station South (Click to enlarge)system while maintaining operations and use of the campus; and creating a highly efficient system in order to reduce the overall energy costs while remaining committed to providing a sustainable, healthy campus and community.


The team at MEP started working with Ball State University in the spring of 2009 to design the largest ground-source, closed-loop district geothermal heating and cooling system in the nation. The systems feature 3,600 vertical bore holes, at 400-500 ft each; 10 miles of buried distribution piping; 1,000 miles of loop field pipe; two district energy stations; four 2,500-ton heat pump chillers; and over 40 building conversions totaling approximately 5,600,000 sq ft. The project will be installed in two major phases. The first phase began with the conversion to geothermal on half the campus and construction of the new 12,000-sq-ft District Energy Station North to house two compound centrifugal compressor heat pump chillers. This included the installation of distribution piping to buildings on the north half of campus, two well fields, and the conversion of 19 campus buildings to geothermal heating and cooling. Approximately 10 miles of hot and chilled water supply and return distribution piping was buried or installed in existing utility tunnels. Once completed, the new system will save the university $2 million in annual energy cost. By not burning 36,000 tons of coal each year, the university will eliminate 85,000 tons of carbon dioxide emissions, 240 tons of nitrogen oxide, 200 tons of particulate matter, 80 tons of carbon monoxide, 1,400 tons of sulfur dioxide and 3,400 tons of coal ash annually. Eliminating four coal burning boilers, this project will help Ball State University eliminate approximately one-half of its current campus carbon footprint.

No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2013 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
A cool solution: Collaboration, chemistry leads to foundry coat product development; See the 2015 Product of the Year Finalists
Raising the standard: What's new with NFPA 70E; A global view of manufacturing; Maintenance data; Fit bearings properly
Sister act: Building on their father's legacy, a new generation moves Bales Metal Surface Solutions forward; Meet the 2015 Engineering Leaders Under 40
Cyber security cost-efficient for industrial control systems; Extracting full value from operational data; Managing cyber security risks
Drilling for Big Data: Managing the flow of information; Big data drilldown series: Challenge and opportunity; OT to IT: Creating a circle of improvement; Industry loses best workers, again
Pipeline vulnerabilities? Securing hydrocarbon transit; Predictive analytics hit the mainstream; Dirty pipelines decrease flow, production—pig your line; Ensuring pipeline physical and cyber security
Upgrading secondary control systems; Keeping enclosures conditioned; Diagnostics increase equipment uptime; Mechatronics simplifies machine design
Designing positive-energy buildings; Ensuring power quality; Complying with NFPA 110; Minimizing arc flash hazards
Building high availability into industrial computers; Of key metrics and myth busting; The truth about five common VFD myths

Annual Salary Survey

After almost a decade of uncertainty, the confidence of plant floor managers is soaring. Even with a number of challenges and while implementing new technologies, there is a renewed sense of optimism among plant managers about their business and their future.

The respondents to the 2014 Plant Engineering Salary Survey come from throughout the U.S. and serve a variety of industries, but they are uniform in their optimism about manufacturing. This year’s survey found 79% consider manufacturing a secure career. That’s up from 75% in 2013 and significantly higher than the 63% figure when Plant Engineering first started asking that question a decade ago.

Read more: 2014 Salary Survey: Confidence rises amid the challenges

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.