Ball State University, Campus Wide Geothermal Conversion

Geothermal conversion and new district energy stations: Ball State University, Campus Wide Geothermal Conversion; MEP Associates, LLC

08/09/2012


Location of north well field and District Energy Station North (Click to enlarge)Project name: Ball State University, Campus Wide Geothermal Conversion

Location: Muncie, Ind.

Firm name: MEP Associates, LLC

Project type, building type: Geothermal conversion and new district energy stations, school (college, university)

Project duration: 5 years

Project completion date: 2014

Project budget for mechanical, electrical, plumbing, fire protection engineering only: $6.5 million

Engineering challenges

Accurately identifying the campus thermal profile and evaluating the current building systems in order to determine correct sizing of the well fields and the new distribution system; phasing and transformation of an existing campus system to a new geothermal Location of south well field and District Energy Station South (Click to enlarge)system while maintaining operations and use of the campus; and creating a highly efficient system in order to reduce the overall energy costs while remaining committed to providing a sustainable, healthy campus and community.

Solutions

The team at MEP started working with Ball State University in the spring of 2009 to design the largest ground-source, closed-loop district geothermal heating and cooling system in the nation. The systems feature 3,600 vertical bore holes, at 400-500 ft each; 10 miles of buried distribution piping; 1,000 miles of loop field pipe; two district energy stations; four 2,500-ton heat pump chillers; and over 40 building conversions totaling approximately 5,600,000 sq ft. The project will be installed in two major phases. The first phase began with the conversion to geothermal on half the campus and construction of the new 12,000-sq-ft District Energy Station North to house two compound centrifugal compressor heat pump chillers. This included the installation of distribution piping to buildings on the north half of campus, two well fields, and the conversion of 19 campus buildings to geothermal heating and cooling. Approximately 10 miles of hot and chilled water supply and return distribution piping was buried or installed in existing utility tunnels. Once completed, the new system will save the university $2 million in annual energy cost. By not burning 36,000 tons of coal each year, the university will eliminate 85,000 tons of carbon dioxide emissions, 240 tons of nitrogen oxide, 200 tons of particulate matter, 80 tons of carbon monoxide, 1,400 tons of sulfur dioxide and 3,400 tons of coal ash annually. Eliminating four coal burning boilers, this project will help Ball State University eliminate approximately one-half of its current campus carbon footprint.



The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
Doubling down on digital manufacturing; Data driving predictive maintenance; Electric motors and generators; Rewarding operational improvement
2017 Lubrication Guide; Software tools; Microgrids and energy strategies; Use robots effectively
Prescriptive maintenance; Hannover Messe 2017 recap; Reduce welding errors
The cloud, mobility, and remote operations; SCADA and contextual mobility; Custom UPS empowering a secure pipeline
Infrastructure for natural gas expansion; Artificial lift methods; Disruptive technology and fugitive gas emissions
Mobility as the means to offshore innovation; Preventing another Deepwater Horizon; ROVs as subsea robots; SCADA and the radio spectrum
Research team developing Tesla coil designs; Implementing wireless process sensing
Commissioning electrical systems; Designing emergency and standby generator systems; Paralleling switchgear generator systems
Natural gas engines; New applications for fuel cells; Large engines become more efficient; Extending boiler life

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
The maintenance journey has been a long, slow trek for most manufacturers and has gone from preventive maintenance to predictive maintenance.
Featured articles highlight technologies that enable the Industrial Internet of Things, IIoT-related products and strategies to get data more easily to the user.
This digital report will explore several aspects of how IIoT will transform manufacturing in the coming years.
Maintenance Manager; California Oils Corp.
Associate, Electrical Engineering; Wood Harbinger
Control Systems Engineer; Robert Bosch Corp.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me