Back to Basics: Motion, guidance, positioning

Setting any object in motion makes it necessary to transfer power and overcome friction. For millennia humankind has used rollers and slides; modern technologies are much better. Here’s a quick guide to types of linear guides.


Structure of a ball guide illustrates the newest generation of profiled rail guides. Courtesy: Bosch Rexroth AGLinear technology, the interface between stationary and moving parts, transmits power, guides machine components, and positions them exactly. Linear guides can be classified according to the nature of the movement and the contact area. Movement can be along an axis (linear guide) or circle an axis (rotary guide). The nature of the contact point defines the subdivision into rolling, sliding, and magnetic guides. Rolling element guides are particularly fast and will tolerate high loads, while sliding guides have excellent damping properties, and magnetic guides are distinguished by long service lives. Magnet guides are special cases and rarely used in practice.

Rolling guides

In everyday life rolling-element guides using profiled rails are the standard choice for linear motion and will be found in the majority of applications. Rolling elements are balls or rollers and transmit the forces from the carrier block to the guide track.

Rolling elements recirculate inside the block, in the direction of its travel. The guide grooves exhibit an arc-like profile. The balls “hug” the edges, increasing the contact area and enhancing load distribution. Because the contact surface for rollers is far larger than that for balls, rollers can transmit far higher loads. In turn, they can achieve far more compact designs with the same load levels. Rolling elements move on a lubricating film to reduce friction. Beyond that, the lubricant protects the metallic components against corrosion and extends the service life of the linear guide.

Profiled rail guides

Rolling guides without (Figure A) and with (Figure B) rolling element recirculation. 1) Carrier block, 2) Rolling elements, 3) Guide rail. Courtesy of Bosch Rexroth and design hoch drei GmbH & Co. KGIn addition to reduced rolling friction, profiled rail guides are also distinguished by superb precision. High load-carrying capacities and great stiffness qualify them for most tasks associated with precise linear motions. They comprise a profiled guide rail and a carrier block of individual components. One major component is the carrier block body with its hardened raceways, since the rolling elements circulating inside the block transfer the motion-related loads from the block to the rail. There is a wide variety of profiled rail guides. Depending on the rolling elements used, they may be ball rail systems, roller rail systems, or cam roller guides. They may exhibit any of many combinations of narrow, long, or tall carrier blocks; they may have two, four, or six rows of rolling elements, and may be in an X or O configuration. Ball and roller guide rails that integrate a direct, inductive longitudinal measurement system join the “guidance” and “measurement” functions into one and give the mechanical engineer new options in machinery design.

Linear guide selection

Figure C: Stress distribution for osculating contact areas. Figure D: Contact areas for balls and rollers at increasing loads. Courtesy of Bosch Rexroth and design hoch drei GmbH & Co. KGMany parameters influence selecting the ideal guide, such as application environment and task to be fulfilled. Essential criteria for the users are precision, loading capacity, and running speed. Classification of carrier blocks and rails according to the precision level is especially important. Tolerances between the rail and the block will typically range from ± 5 to ± 120 micrometers. Online guide selection assistance is available. A form asks questions about properties needed: travel speed, acceleration, temperatures, loading, and dirt and corrosion, leading to a list of suitable products.

- Kevin Gingerich is manager, communications and eBusiness, Bosch Rexroth, Edited by Mark T. Hoske, CFE Media, Control Engineering,

Machine Control Channel 

Bosch Rexroth Linear Technology Handbook 

No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2013 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
A cool solution: Collaboration, chemistry leads to foundry coat product development; See the 2015 Product of the Year Finalists
Raising the standard: What's new with NFPA 70E; A global view of manufacturing; Maintenance data; Fit bearings properly
Sister act: Building on their father's legacy, a new generation moves Bales Metal Surface Solutions forward; Meet the 2015 Engineering Leaders Under 40
Cyber security cost-efficient for industrial control systems; Extracting full value from operational data; Managing cyber security risks
Drilling for Big Data: Managing the flow of information; Big data drilldown series: Challenge and opportunity; OT to IT: Creating a circle of improvement; Industry loses best workers, again
Pipeline vulnerabilities? Securing hydrocarbon transit; Predictive analytics hit the mainstream; Dirty pipelines decrease flow, production—pig your line; Ensuring pipeline physical and cyber security
Upgrading secondary control systems; Keeping enclosures conditioned; Diagnostics increase equipment uptime; Mechatronics simplifies machine design
Designing positive-energy buildings; Ensuring power quality; Complying with NFPA 110; Minimizing arc flash hazards
Building high availability into industrial computers; Of key metrics and myth busting; The truth about five common VFD myths

Annual Salary Survey

After almost a decade of uncertainty, the confidence of plant floor managers is soaring. Even with a number of challenges and while implementing new technologies, there is a renewed sense of optimism among plant managers about their business and their future.

The respondents to the 2014 Plant Engineering Salary Survey come from throughout the U.S. and serve a variety of industries, but they are uniform in their optimism about manufacturing. This year’s survey found 79% consider manufacturing a secure career. That’s up from 75% in 2013 and significantly higher than the 63% figure when Plant Engineering first started asking that question a decade ago.

Read more: 2014 Salary Survey: Confidence rises amid the challenges

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.