Back to Basics: How gain scheduling works

Gain scheduling facilitates process control when the gains and the time constants vary with the current value of the process variable. Gain scheduling is particularly appropriate for processes that speed up or slow down as the process variable rises and falls. It also works if the process... (Updated with subscriber comments Feb. 16, and Feb. 5, 2011.)

12/21/2010


Gain scheduling is a PID enhancement that facilitates the control of a process with gains and time constants that vary according to the current value of the process variable. [See subscriber comments and examples, added below on Feb. 16 and Feb. 5, 2011.] A gain scheduler runs in the controller’s microprocessor and monitors the process variable to determine when the process has entered a new operating range. It then updates the controller with a predetermined set of tuning parameters designed to optimize the closed-loop performance in that range.

Gain scheduling is particularly appropriate for processes that speed up or slow down as the process variable rises and falls. It also works if the process becomes more or less sensitive to the controller’s efforts as the process variable changes.

Consider, for example, a process consisting of the water in a spherical tank as shown in the figure. Because of the tank’s non-uniform cross section, a controller regulating the water level will find the process much more responsive to manipulations of the incoming flow rate when the tank is almost full compared to when the tank is only half full. The controller would therefore need to apply only a small control effort to overcome any deficiency in the water level while the process is operating in a high-level range. But if the process were operating in a mid-level range, the controller would need to apply a much larger control effort to compensate for the same deficiency.

A PID loop with fixed tuning parameters would be severely challenged by these conditions. If it had been tuned for optimal performance with the tank nearly full, it would be much too slow about correcting level deficiencies when the tank is only half full. Conversely, had it been tuned to be aggressive enough for a half-full tank, it would be much too aggressive for a tank that is almost full.

Gain scheduler advantages

A gain scheduler provides the best of both worlds. It allows the controller to be tuned for any number of operating ranges so that an optimal set of tuning parameters can be downloaded into the controller depending on the current value of the process variable.

Unfortunately, that’s a lot of work. The control engineer implementing the gain schedule must first determine how the full span of the process variable should be partitioned into distinct operating ranges that adequately represent all the possible variations in the process’s behavior. In the water tank example, “nearly empty,” “half full,” and “almost full” would be obvious choices, but there could also be several or several dozen ranges in between, depending on how severely the process’s behavior varies as the water level changes.

The implementer would then have to operate the process within each range and tune the controller for optimal closed-loop performance each time. She would then load the resulting sets of tuning parameters into the gain schedule to be retrieved by the controller whenever the process variable enters the operating range that corresponds to each set. In the tank example, that would require the implementer to fill the tank a little, tune the controller to maintain the level there, record the resulting tuning parameters in the gain schedule, fill the tank a little more, and repeat until the entire range of tank levels had been covered.

- Vance VanDoren, PhD, PE, is Control Engineering contributing content specialist, at controleng@msn.com. www.controleng.com

Submit real-world gain scheduling case studies to illustrate these techniques: www.controleng.com/contribute or add a Tips and Tricks item at www.controleng.com/awards.

READER FEEDBACK

Reader feedback follows on the article above, along with another link on gain scheduling from a Control Engineering blog posting.

Linearize the process feedback to units of volume

Concerning your article titled “How gain scheduling works” on page 56 of the January 2011 edition of Control Engineering, I have a suggestion.

Instead of implementing gains scheduling, why not linearize the process feedback to units of volume?  If you use the water level to calculate the current volume of water in the tank, the need for gains scheduling goes away.  While the gains of the PID are no longer scheduled, the effective gain of the system still changes – so the engineer would have to be careful to tune his PID so that it was still stable in the region where the ratio of tank level to volume was the highest (in this case, the mid-point of the tank).  However I would argue that the overall system will be easier to tune, take less time to tune, and be simpler.  Plus it allows you to determine the percentage of the tank’s capacity, which will likely be more useful to the operator or controls software than percent of non-linear level.

John Blystone, Instrumentation & Controls Department Supervisor
Louis Perry & Associates Inc.
www.louisperry.com

My lawnmower gas tank is a good example

I just read the article "How Gain Scheduling Works " in the January 2011 Control Engineering magazine.

I thought I’d add this somewhat humorous observation: this article could be subtitled “Why Do I Always Spill Gas When I Fill the Tank on the Lawnmower?”

John Winders, PMP
Senior Electrical Engineer, Polytron
Polytron, based in Duluth, Georgia (north of Atlanta) helps customers engineer and operate with manufacturing excellence. www.polytron.com



No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
Your leaks start here: Take a disciplined approach with your hydraulic system; U.S. presence at Hannover Messe a rousing success
Hannover Messe 2016: Taking hold of the future - Partner Country status spotlights U.S. manufacturing; Honoring manufacturing excellence: The 2015 Product of the Year Winners
Inside IIoT: How technology, strategy can improve your operation; Dry media or web scrubber?; Six steps to design a PM program
Getting to the bottom of subsea repairs: Older pipelines need more attention, and operators need a repair strategy; OTC preview; Offshore production difficult - and crucial
Digital oilfields: Integrated HMI/SCADA systems enable smarter data acquisition; Real-world impact of simulation; Electric actuator technology prospers in production fields
Special report: U.S. natural gas; LNG transport technologies evolve to meet market demand; Understanding new methane regulations; Predictive maintenance for gas pipeline compressors
Warehouse winter comfort: The HTHV solution; Cooling with natural gas; Plastics industry booming
Managing automation upgrades, retrofits; Making technical, business sense; Ensuring network cyber security
Designing generator systems; Using online commissioning tools; Selective coordination best practices

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
This article collection contains several articles on the vital role that compressed air plays in manufacturing plants.
This article collection contains several articles on the Industrial Internet of Things (IIoT) and how it is transforming manufacturing.
This article collection contains several articles on strategic maintenance and understanding all the parts of your plant.
click me