Back to Basics: Data packets

Putting data in packages is basic to virtually all our networking concepts.

05/16/2012


One of the things we take for granted every time we look at something on the Internet or an industrial control system is that our networks can send and receive data from any number of sources at the same time and it all seems to work. It wasn’t always like that, and we have the technology of data packets to thank for it.

In the early days of digital computing, devices communicated with each other using point-to-point serial communication. Basically the data flowed from device A to device B like water flowing through a pipe when both ends open the appropriate valves. It was crude, but it worked within its limitations. Early on that was tolerable because there were so few computers that had to communicate.

By the early 1960s, computers were becoming more numerous and the kind of data that was being communicated more critical. Paul Baran, who was working for the Rand Corporation, concluded that if data could be broken into chunks rather than a continuous flow, it could support a more robust system that could tie together far more devices via a common network. It might even be capable of withstanding a nuclear attack, which given that Cold War era, was a valid concern. Baran was a visionary and imagined systems like the Internet long before most people did.

What is a packet?

To return to the water flowing analogy, instead of sending water down a pipe, if you put it in a bottle, you can send it anywhere. Others compare data packets to letters, where a message is put in an envelope and carried by the post office.

A packet is a framework of a specific size and structure. It has a header and trailer at the beginning and end that identify who sent it, where it’s going, etc. In the middle there is a space for the message itself, or payload. For a given type of network, the payload has a length limitation so a longer message may have to be broken into multiple packets. If the message is short, the other parts of the packet don’t get any smaller. Various networking protocols do the details differently, but the basic concepts are largely the same. Applications on the sending and receiving ends put the data in packets for transmission and unpack it when it arrives.

Networking protocols are rated on their efficiency, or the amount of message payload compared to the overall packet size. If too much of the packet size is taken up with the header, trailer, and other overhead, that protocol is considered inefficient. Part of the argument against using Ethernet for field instrumentation is the idea that it has too much overhead for the small amount of data these devices generate.

One of the benefits of breaking larger data into smaller units is that it is possible to verify the accuracy of a message using an error checking protocol such as a cyclic redundancy check (CRC). In basic terms, all the information in the message in a given packet has a numerical value attached to it. The protocol adds up all those values and divides the sum by another number. The remainder from the calculation is assigned to that message. The receiver does the same calculation and verifies that it got the same remainder value. If it didn’t, it knows that some of the data in the message contained in that packet must have been corrupted and it flags that packet.

Ethernet frame

Ethernet application

Ethernet communication depends on packets, or as they are more typically called, frames. Many variations have been created, but there are typically seven parts to a complete frame:

  • Preamble (used for bit synchronization)
  • SFD (start of frame delimiter)
  • Destination MAC address
  • Source MAC address
  • Length or specific type
  • Message or data payload, and
  • FCS (frame check sequence).

The size of each of these elements is fixed, except for the payload. This can vary as needed for the information being sent, but there is a maximum of about 1.5 kB. This article, set in plain text, would likely require three packets to transmit.

As technologies go, it’s difficult to think of one that has been used and adapted in so many ways, and one that we depend on in so many applications.

Peter Welander is a content manager for Control Engineering. Reach him at pwelander(at)cfemedia.com.



No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2013 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Leaders Under 40 program features outstanding young people who are making a difference in manufacturing. View the 2013 Leaders here.
The new control room: It's got all the bells and whistles - and alarms, too; Remote maintenance; Specifying VFDs
2014 forecast issue: To serve and to manufacture - Veterans will bring skill and discipline to the plant floor if we can find a way to get them there.
2013 Top Plant: Lincoln Electric Company, Cleveland, Ohio
Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Plant Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.

Bring focus to PLC programming: 5 things to avoid in putting your system together; Managing the DCS upgrade; PLM upgrade: a step-by-step approach
Balancing the bagging triangle; PID tuning improves process efficiency; Standardizing control room HMIs
Commissioning electrical systems in mission critical facilities; Anticipating the Smart Grid; Mitigating arc flash hazards in medium-voltage switchgear; Comparing generator sizing software

Annual Salary Survey

Participate in the 2013 Salary Survey

In a year when manufacturing continued to lead the economic rebound, it makes sense that plant manager bonuses rebounded. Plant Engineering’s annual Salary Survey shows both wages and bonuses rose in 2012 after a retreat the year before.

Average salary across all job titles for plant floor management rose 3.5% to $95,446, and bonus compensation jumped to $15,162, a 4.2% increase from the 2010 level and double the 2011 total, which showed a sharp drop in bonus.

2012 Salary Survey Analysis

2012 Salary Survey Results

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.