Avoiding corrosion in electrical systems

Properly specifying electrical products for highly corrosive environments will reduce overall long-term cost and risk of failure.

02/17/2014


Figure 1: Corrosion was found on conduit placed underground at a gas station. Courtesy: Robroy IndustriesProduct failure due to corrosion is estimated to cost $1 trillion annually. A key role of consulting and specifying engineers is to help ensure effective specification of products. This responsibility is especially critical when applications are in highly corrosive environments where product failure not only is extremely costly, but also raises the risk of catastrophe and human harm. There is reason to believe that many professionals, although aware of general facts specific to corrosion, do not maintain adequate knowledge of how and why diverse methodologies for corrosion prevention work well in some applications but are ineffective in others. 

The foundation for preventing corrosion damage is continuous education in the causes of corrosion. Understanding product life predictions as well as performance assessment methods is essential for determining which products will truly survive in a corrosive environment. Last, knowing how to follow through with proper specification using third-party product testing results will result in tremendous long-term cost savings.

Short course: Corrosion

A basic knowledge of corrosion is essential for prevention. It starts with a definition of corrosion; this one is from the National Association of Corrosion Engineers (NACE): 

Corrosion is the deterioration of a substance, usually a metal, or its properties, because of an undesirable reaction with its environment. 

Corrosion is a natural and inevitable process that once understood can be mitigated so that preventive measures and controlled outages can take place. 

The next task is to consider the environmental conditions in which the electrical components will be placed. Conditions such as moisture, dust, and temperature can affect the rate of corrosion. 

Moisture: The level of corrosion typically increases with moisture content. Common atmospheric sources of moisture are rain, dew, and condensation. 

Dust: Dust particles can cling to surfaces and retain moisture. Typical sources of dust include soil/sand, smoke, and soot particles or salts. 

Temperature: Increasing the temperature of a corrosive environment will generally increase the rate of corrosion. For every 10 C rise in the temperature, the corrosion rate can double.

Common types of metal corrosion

Knowing common types of corrosion will aid in determining the best methods of prevention. Here are just a few of the types of corrosion that consulting and specifying engineers might face on the job.

  • General corrosion attack is the most common type of corrosion. It is typically caused by a chemical reaction that results in the deterioration of the entire exposed surface of a metal in a uniform manner. Ultimately, the metal deteriorates to the point of failure.
  • Galvanic corrosion occurs between two dissimilar metals. If these metals are placed in contact (or otherwise electrically connected), this potential difference produces electron flow between them, causing corrosion. 
  • Crevice corrosion is a localized corrosion that is associated with a stagnant solution located in material flaws, holes, gasket surfaces, lap joints, surface deposits, and crevices under bolt and rivet heads.
  • Pitting is a form of corrosion caused by a localized attack resulting in holes in the metal.
  • Erosion corrosion results when a protective layer of oxide on a metal surface is dissolved or removed by wind or water, exposing the underlying metal to further corrode and deteriorate.
  • Corrosion fatigue is the mechanical degradation of a material under the joint action of corrosion and cyclic loading or alternating stress.
  • High-temperature corrosion can be caused by compounds that are very corrosive toward metal alloys normally resistant to corrosion, such as stainless steel

Once corrosion is discovered, it must be addressed. However, corrosion is unpredictable, and the most effective way of controlling corrosion is by preventing it. A recent study by the Executive Branch and Government Accountability Office determined that the annual cost of corrosion could be decreased by as much as 40% (or $400 billion) by preventing corrosion instead of treating it as it occurs. 


<< First < Previous 1 2 Next > Last >>

Than , United States, 02/19/14 05:50 PM:

Corrosion is a pervasive problem that costs 3% or more of GDP for most developed nations.
Corrosion is a global problem that has plagued buildings, monuments, equipment, and infrastructure for centuries. Every day scientists, researchers, chemists, engineers, and other professionals create revolutionary solutions to combat corrosion and protect vital assets from the damaging effects of corrosion-related deterioration and failure. In working with folks in the military packaging industry, I know the importance of being pre-emptive when it comes to corrosion prevention or else you could wind up spending a lot more than you’d like.
Than Nguyen
http://www.protectivepackaging.net/military-packaging
Anonymous , 03/14/14 12:06 PM:

My company recently experienced an unusual corrosion problem in one of our gas compressor stations. While potholing, a process of locating underground piping with high pressure water and a vacuum truck, a crew found a high pressure gas line with severe corrosive pitting on it. Several more similar problems were uncovered, including the ground grid. We found a few spots where the ground wire was completely gone and others that had severe corrosion at the wire connections. They aren't quite sure what caused this. Some think a short in one of the station pad mount transformers could have caused it, but I have my doubts. The transformer is a few hundred feet from the corrosion problem, and I believe any voltage going to ground was dispersed on the local ground grid around the transformer. Anyways, we will be replacing the entire ground grid pretty soon. Just wanted to share our story.
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
Strategic outsourcing delivers efficiency; Sleeve bearing clearance; Causes of water hammer; Improve air quality; Maintenance safety; GAMS preview
World-class maintenance: The three keys to success - Deploy people, process and technology; 2016 Lubrication Guide; Why hydraulic systems get hot
Your leaks start here: Take a disciplined approach with your hydraulic system; U.S. presence at Hannover Messe a rousing success
Flexible offshore fire protection; Big Data's impact on operations; Bridging the skills gap; Identifying security risks
The digital oilfield: Utilizing Big Data can yield big savings; Virtualization a real solution; Tracking SIS performance
Getting to the bottom of subsea repairs: Older pipelines need more attention, and operators need a repair strategy; OTC preview; Offshore production difficult - and crucial
Applying network redundancy; Overcoming loop tuning challenges; PID control and networks
Putting COPS into context; Designing medium-voltage electrical systems; Planning and designing resilient, efficient data centers; The nine steps of designing generator fuel systems
Package boilers; Natural gas infrared heating; Thermal treasure; Standby generation; Natural gas supports green efforts

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
This article collection contains several articles on the vital role that compressed air plays in manufacturing plants.
This article collection contains several articles on the Industrial Internet of Things (IIoT) and how it is transforming manufacturing.
This article collection contains several articles on strategic maintenance and understanding all the parts of your plant.
click me