Autonomous robotic plane flies indoors

New algorithms allow an autonomous robotic plane to dodge obstacles in a subterranean parking garage, without the use of GPS.


For decades, academic and industry researchers have been working on control algorithms for autonomous helicopters — robotic helicopters that pilot themselves, rather than requiring remote human guidance. Dozens of research teams have competed in a series of autonomous-helicopter challenges posed by the Association for Unmanned Vehicle Systems International (AUVSI); progress has been so rapid that the last two challenges have involved indoor navigation without the use of GPS.

MIT’s Robust Robotics Group — which fielded the team that won the last AUVSI contest — has set itself an even tougher challenge: developing autonomous-control algorithms for the indoor flight of GPS-denied airplanes. At the 2011 International Conference on Robotics and Automation (ICRA), a team of researchers from the group described an algorithm for calculating a plane’s trajectory; in 2012, at the same conference, they presented an algorithm for determining its “state” — its location, physical orientation, velocity and acceleration. Now, the MIT researchers have completed a series of flight tests in which an autonomous robotic plane running their state-estimation algorithm successfully threaded its way among pillars in the parking garage under MIT’s Stata Center.

“The reason that we switched from the helicopter to the fixed-wing vehicle is that the fixed-wing vehicle is a more complicated and interesting problem, but also that it has a much longer flight time,” says Nick Roy, an associate professor of aeronautics and astronautics and head of the Robust Robotics Group. “The helicopter is working very hard just to keep itself in the air, and we wanted to be able to fly longer distances for longer periods of time.”

With the plane, the problem is more complicated because “it’s going much faster, and it can’t do arbitrary motions,” Roy says. “They can’t go sideways, they can’t hover, they have a stall speed.”

Found in translation

To buy a little extra time for their algorithms to execute, and to ensure maneuverability in close quarters, the MIT researchers built their own plane from scratch. Adam Bry, a graduate student in the Department of Aeronautics and Astronautics and lead author on both ICRA papers, consulted with AeroAstro professor Mark Drela about the plane’s design. “He’s a guy who can design you a complete airplane in 10 minutes,” Bry says. “He probably doesn’t remember that he did it.” The plane that resulted has unusually short and broad wings, which allow it to fly at relatively low speeds and make tight turns but still afford it the cargo capacity to carry the electronics that run the researchers’ algorithms.

Because the problem of autonomous plane navigation in confined spaces is so difficult, and because it’s such a new area of research, the MIT team is initially giving its plane a leg up by providing it with an accurate digital map of its environment. That’s something that the helicopters in the AUVSI challenges don’t have: They have to build a map as they go.

But the plane still has to determine where it is on the map in real time, using data from a laser rangefinder and inertial sensors — accelerometers and gyroscopes — that it carries on board. It also has to deduce its orientation — how much it’s tilted in any direction — its velocity, and its acceleration. Because many of those properties are multidimensional, to determine its state at any moment, the plane has to calculate 15 different values.

That’s a massive computational challenge, but Bry, Roy and Abraham Bachrach — a grad student in electrical engineering and computer science who’s also in Roy’s group — solved it by combining two different types of state-estimation algorithms. One, called a particle filter, is very accurate but time consuming; the other, called a Kalman filter, is accurate only under certain limiting assumptions, but it’s very efficient. Algorithmically, the trick was to use the particle filter for only those variables that required it and then translate the results back into the language of the Kalman filter.

Confronting doubt

To plot the plane’s trajectory, Bry and Roy adapted extremely efficient motion-planning algorithms developed by AeroAstro professor Emilio Frazzoli’s Aerospace Robotics and Embedded Systems (ARES) Laboratory. The ARES algorithms, however, are designed to work with more reliable state information than a plane in flight can provide, so Bry and Roy had to add an extra variable to describe the probability that a state estimation was reliable, which made the geometry of the problem more complicated.

The MIT researchers’ next step will be to develop algorithms that can build a map of the plane’s environment on the fly. Roy says that the addition of visual information to the rangefinder’s measurements and the inertial data could make the problem more tractable. “There are definitely significant challenges to be solved,” Bry says. “But I think that it’s certainly possible.”


- Edited by Chris Vavra, Control Engineering, 

No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2013 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
Sister act: Building on their father's legacy, a new generation moves Bales Metal Surface Solutions forward; Meet the 2015 Engineering Leaders Under 40
2015 Mid-Year Report: Manufacturing's newest tool: In a digital age, digits will play a key role in the plant of the future; Ethernet certification; Mitigate harmonics; World class maintenance
2015 Lubrication Guide: Green and gold in lubrication: Environmentally friendly fluids and sealing systems offer a new perspective
Drilling for Big Data: Managing the flow of information; Big data drilldown series: Challenge and opportunity; OT to IT: Creating a circle of improvement; Industry loses best workers, again
Pipeline vulnerabilities? Securing hydrocarbon transit; Predictive analytics hit the mainstream; Dirty pipelines decrease flow, production—pig your line; Ensuring pipeline physical and cyber security
Cyber security attack: The threat is real; Hacking O&G control systems: Understanding the cyber risk; The active cyber defense cycle
Designing positive-energy buildings; Ensuring power quality; Complying with NFPA 110; Minimizing arc flash hazards
Building high availability into industrial computers; Of key metrics and myth busting; The truth about five common VFD myths
New industrial buildings: Greener, cleaner, leaner; New building designs for industry; Take a new look at absorption cooling; Offshored jobs start to come back

Annual Salary Survey

After almost a decade of uncertainty, the confidence of plant floor managers is soaring. Even with a number of challenges and while implementing new technologies, there is a renewed sense of optimism among plant managers about their business and their future.

The respondents to the 2014 Plant Engineering Salary Survey come from throughout the U.S. and serve a variety of industries, but they are uniform in their optimism about manufacturing. This year’s survey found 79% consider manufacturing a secure career. That’s up from 75% in 2013 and significantly higher than the 63% figure when Plant Engineering first started asking that question a decade ago.

Read more: 2014 Salary Survey: Confidence rises amid the challenges

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.