Automation transforms the plant, and is transformed in return

Not only has automation changed the way we manufacture goods, it has also changed the way we view the manufacturing process. In 1947, Yardeny Laboratories introduced the pulsing drive, which controlled the speed, direction and position of electric motors. Material was moved using overhead trolleys, belt conveyors and chain conveyors.

06/15/2007


Not only has automation changed the way we manufacture goods, it has also changed the way we view the manufacturing process.

In 1947, Yardeny Laboratories introduced the pulsing drive, which controlled the speed, direction and position of electric motors. Material was moved using overhead trolleys, belt conveyors and chain conveyors. Today, guided vehicles transport materials without human drivers. Robots connected via industrial networks assemble automobiles and transfer subassemblies between stations.

In the past, cars were produced in batches, running the same model and the same color, hoping consumers wanted the models and colors they made. Today, auto makers manufacture cars to order %%MDASSML%% in batches of one.


Automation also transformed electronic product manufacturing. Radios and TVs were once wired by hand; they're now assembled by pick-and-place machines.

In 1947, switchgear, motor control centers and plant electrical systems were monitored by operators reading analog meters. Today, switchgear, MCCs and plant electrical distribution systems monitor themselves, protecting motors and equipment with electronic overload relays. Sophisticated metering, software and power monitoring equipment enable plant managers to maximize production time, maintain worker safety and provide the best possible power quality at the lowest possible cost.

How automation changed automation

Perhaps the biggest plant floor changes automation has made in the past 60 years are in automation itself. Numerical control of machining equipment, the distributed control system and the PLC were innovations that changed the course of manufacturing.

Early refineries were making the transition from batch stills to continuous process operations. Operators made process decisions based on observing product volume, color and temperature through sight glasses or feeling the pipes. They could react to obvious change, but had limited ability to actually control the process.

By the mid-1950s, chemical plants and refineries used pneumatic instruments to control their processes from central control rooms. Armed with clipboards, operators roamed plants, recording data read from gauges and thermometers, and made judgments from process observations.

Electronic instrumentation began to replace pneumatics in the late 1950s. Using mini-computers to control refineries and chemical plants began in the early 1960s %%MDASSML%% a significant milestone.

DCSs began to appear around 1975. Today, process control extends beyond PID and closed loop control to include model-based control, real-time optimization, real time performance management tools and alarm management.

The American automotive industry drove the need for technology that led to the development of the PLC. Relays and timers performed control, sequencing and safety interlocking for making cars. Bedford Associates developed the first PLC: Modicon, which stood for modular digital controller.

PLCs replaced thousands of relays, cam timers and drum sequencers that controlled machines. Software revision replaced re-wiring of hard-wired control panels when production requirements changed.

A programmable automation controller combines the features and capabilities of a PC-based control system with that of a typical PLC. PACs are used for process control, data acquisition, remote equipment monitoring, machine vision and motion control. Today, PACs can transfer data from the machines they control to other machines and components in networked systems, or to application software and databases.

Automation made today's productivity and efficiency possible. The ability to extract information from manufacturing processes helps plants improve their bottom lines. Tomorrow's challenges will be how best to apply what we have learned and to apply it to new challenges.





No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
2016 Product of the Year; Diagnose bearing failures; Asset performance management; Testing dust collector performance measures
Safety for 18 years, warehouse maintenance tips, Ethernet and the IIoT, GAMS 2016 recap
2016 Engineering Leaders Under 40; Future vision: Where is manufacturing headed?; Electrical distribution, redefined
SCADA at the junction, Managing risk through maintenance, Moving at the speed of data
Safety at every angle, Big Data's impact on operations, bridging the skills gap
The digital oilfield: Utilizing Big Data can yield big savings; Virtualization a real solution; Tracking SIS performance
Applying network redundancy; Overcoming loop tuning challenges; PID control and networks
Driving motor efficiency; Preventing arc flash in mission critical facilities; Integrating alternative power and existing electrical systems
Package boilers; Natural gas infrared heating; Thermal treasure; Standby generation; Natural gas supports green efforts

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
This article collection contains several articles on the vital role of plant safety and offers advice on best practices.
This article collection contains several articles on the Industrial Internet of Things (IIoT) and how it is transforming manufacturing.
This article collection contains several articles on strategic maintenance and understanding all the parts of your plant.
click me