Automated cell for bearing machining, parts sorting

Texas shop’s automation team deploys programmable gages for measuring and sorting mud-motor bearings. Process-controlled hard turning cell paid for itself in 18 days.

11/24/2013


Overall view at Conroe Machine through guarding shows a hard-turning cell with robotic part handling and part inspection in Texas shop’s automation team, which deployed Renishaw Equator programmable gages for measuring and sorting mud-motor bearings. ProcConroe Machine is doing what most machine shops only dream of: hard turning a family of parts around the clock in a fully automated cell that operates a "self-controlled" process. The company is proof that the dream is achievable for any shop ready to use the talents of today’s young automation experts to exploit new technologies, including programmable gages. The turning cell, with software and programming developed by CNC programmer James Wardell and robotics technician Jeff Buck, integrates a robot with the gaging system, using software to provide communication for 100% part inspection and auto-compensation of a twin-spindle lathe. The cell also boxes and palletizes finished parts. According to the company, the cell paid for itself in 18 days.

The same automation team created a fully automated part measurement and sorting cell for a customer, this time combining two gages, robot, vision system, and multiple lanes of low-profile conveyor. In both applications, the gage demonstrated the value of programmable comparative inspection by quickly measuring a family of bearing races and doing it cost effectively, without fixturing or problems from a shop floor environment.

The robot places a machined bearing into the Equator’s measuring envelope (foreground), with part conveyor and Okuma 2SP-250H twin-spindle lathe in background. The aluminum block on the Equator’s fixture plate has a hole in the center, which the Equator uConroe Machine is a relatively young company, founded by Murray "Tippy" Touchette in 2000, with the objective of producing parts with the best manufacturing technology. The company grew rapidly to about 150 employees operating in a climate-controlled 65,000-sq-ft (6000-sq-m) plant. While it is a general-purpose shop, Conroe’s location near Houston results in a high percentage of business from the oil and gas industry, principally for drilling components. One of the company’s continuously running jobs for the industry is manufacture of thrust bearing races for downhole mud motors. These parts are produced by the thousands each week, around the clock.

More automation

The bearings are roughed out on four lathes that originally did roughing and finishing, and were served by four operators. These machines are now split into two cells, loaded/unloaded by robots, doing only the roughing operation—these cells were among the shop’s earlier automation projects (see Conroe's Johnny 5 robot on YouTube). The semi-finished parts are sent out to be case hardened to HRC 65 at a depth of 0.070 in. (1.7 mm) before the finish turning.

“Our production plateaued at 800 to 1000 total parts per day with these two cells,” explained James Wardell. “We had a single operator loading the machines and inspecting the parts. However, you can rely on an operator to correctly inspect only so many parts with this kind of volume, and we needed even more output.

Fanuc M20iA 6-axis robot waits for completion of measurement cycle before transferring acceptable parts to an engraving station and then to a shipping container at immediate right. Courtesy: Renishaw Inc.“For our next step up, we conceived a fully automated process for the finish machining, with automatic part loading, post-process measurement, automatic tool compensation, part engraving, and boxing/palletizing the parts,” he added. “We had pretty good ideas for the components of such a system, except for the part measurement technology, CNC type, and software for tool compensation. Inspection must be fast to keep up with the cycle times on the parts, which can be as short as 98 seconds. Originally, we looked at white light laser inspection because of its speed, but the parts are too reflective. We also looked at hard gaging and shop-floor CMMs. Hard gaging was very expensive and required setup attention, and the CMM gave no speed advantage.” While working on other projects, the company found out about the automated gages.

Process-control tools, software

The Renishaw Equator uses an SP25 probe for touch and scanning data collection, to find the center on the part, then surface scans to complete the measurement cycle. It works at speeds of up to 1000 points per second. Courtesy: Renishaw Inc.The low-cost, flexible alternative to dedicated gaging uses the comparison method of measuring. A master part with known measurements taken on a CMM is used to "master" the gage, with all subsequent measurements compared to the master. Repeatability is 0.00007 in. (0.002 mm) immediately after mastering. To compensate for shop temperature changes, the gage can be re-mastered at any time. The gage uses a probe for touch and scanning data collection, at speeds of up to 1000 points per second. Styli are stored in an integral six-port changing rack, and the system is programmed through gaging software. The gage can be used manually with push-button ease, but its software for automation also makes it ideal for integration into cells like Conroe's.

Conroe engineers saw the gage at an open house at Hartwig in early 2012, along with a twin-spindle dual-gantry lathe, said Wardell. “Apart from being automation ready for parts of our type, the lathe’s [Microsoft] Windows-based dual-path control has an open-architecture, PC-based operating platform, which was important in our plan for developing our own auto-compensation software.”


<< First < Previous 1 2 Next > Last >>

IAN , Non-US/Not Applicable, New Zealand, 11/25/13 01:07 PM:

automation in this case the only way to go. looking for a process to clean grease and inspect aircraft wheel bolts for a range of aircraft wheels
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
Strategic outsourcing delivers efficiency; Sleeve bearing clearance; Causes of water hammer; Improve air quality; Maintenance safety; GAMS preview
World-class maintenance: The three keys to success - Deploy people, process and technology; 2016 Lubrication Guide; Why hydraulic systems get hot
Your leaks start here: Take a disciplined approach with your hydraulic system; U.S. presence at Hannover Messe a rousing success
Flexible offshore fire protection; Big Data's impact on operations; Bridging the skills gap; Identifying security risks
The digital oilfield: Utilizing Big Data can yield big savings; Virtualization a real solution; Tracking SIS performance
Getting to the bottom of subsea repairs: Older pipelines need more attention, and operators need a repair strategy; OTC preview; Offshore production difficult - and crucial
Applying network redundancy; Overcoming loop tuning challenges; PID control and networks
Putting COPS into context; Designing medium-voltage electrical systems; Planning and designing resilient, efficient data centers; The nine steps of designing generator fuel systems
Package boilers; Natural gas infrared heating; Thermal treasure; Standby generation; Natural gas supports green efforts

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
This article collection contains several articles on the vital role that compressed air plays in manufacturing plants.
This article collection contains several articles on the Industrial Internet of Things (IIoT) and how it is transforming manufacturing.
This article collection contains several articles on strategic maintenance and understanding all the parts of your plant.
click me