Arup Thoughts: The world’s railways need more capacity

How advanced signaling technology will play an essential role if the world increases its railway capacity.

05/28/2014


Courtesy: ARUP

People are traveling more than ever before – and they increasingly choose rail to doit. To meet this demand, countries must either build new railways or increase capacity on their existing lines. I think using what you have more efficiently is often the better and cheaper option. In many developed countries, finding the land to build new lines is a challenge – as is meeting the huge cost of such projects. Technology offers a more affordable way to deliver the required capacity by allowing you to run trains faster and closer together without altering the track.

Take a 10km stretch of track as an example. Now imagine there was a way to let four trains use it at any one time instead of, say, two trains. You’ve doubled the capacity. This is a possibility that is being opened up by communications-based signaling technology such as the European Train Control System, which Arup is working on in the UK for Network Rail in a joint venture with Ansaldo.

Such systems replace traditional trackside signals with a display inside every train cab. Increased capacity is far from their only benefit. This sort of signaling reduces maintenance costs because it needs less line-side equipment, improves performance and enhances safety by automatically stopping the train if it goes too far or too fast on a particular stretch of track.

However, current technology like ETCS would probably deliver an increase in capacity of just 20% or so. What’s more exciting is the potential offered by high-speed cellular communications such as 4G LTE. This will enable information about trains’ locations to be pinpointed more accurately and transmitted faster.

With high-speed communications, you can run very fast trains very close together very safely – increasing capacity. Take two trains running one behind the other at 200kph, for example. If the first train slowed down, the signaling system would reduce the speed of the following train by the same amount. Communications-based signaling would free up capacity in other ways too. You would no longer need separate lines for fast and slow trains traveling along the same route, as is often the case today. Instead, travelers could be better served by faster services each stopping at a different selection of stations.

So just how much capacity could this add? Using this approach, I believe it will be possible to double capacity on a typical railway within the next 20 or 30 years. And the capital cost of fitting the required equipment in trains is much lower than the capital cost of building entirely new lines. What’s more, the absence of line-side equipment makes this signaling equipment cheaper to maintain too. Instead of maintenance crews traveling out to look after remote equipment that has proven vulnerable to vandalism and theft, the equipment would come to them – on-board the trains.

Tony Vidago leads Arup's global rail engineering business. This post originally appeared on Arup Thoughts http://thoughts.arup.com/post/details/350/the-worlds-railways-need-more-capacity. Edited by Jessica DuBois-Maahs, associate content manger, CFE Media, jdmaahs((at)cfemedia.com



No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2013 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
The true cost of lubrication: Three keys to consider when evaluating oils; Plant Engineering Lubrication Guide; 11 ways to protect bearing assets; Is lubrication part of your KPIs?
Contract maintenance: 5 ways to keep things humming while keeping an eye on costs; Pneumatic systems; Energy monitoring; The sixth 'S' is safety
Transport your data: Supply chain information critical to operational excellence; High-voltage faults; Portable cooling; Safety automation isn't automatic
Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Plant Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.

Maintaining low data center PUE; Using eco mode in UPS systems; Commissioning electrical and power systems; Exploring dc power distribution alternatives
Synchronizing industrial Ethernet networks; Selecting protocol conversion gateways; Integrating HMIs with PLCs and PACs
Why manufacturers need to see energy in a different light: Current approaches to energy management yield quick savings, but leave plant managers searching for ways of improving on those early gains.

Annual Salary Survey

Participate in the 2013 Salary Survey

In a year when manufacturing continued to lead the economic rebound, it makes sense that plant manager bonuses rebounded. Plant Engineering’s annual Salary Survey shows both wages and bonuses rose in 2012 after a retreat the year before.

Average salary across all job titles for plant floor management rose 3.5% to $95,446, and bonus compensation jumped to $15,162, a 4.2% increase from the 2010 level and double the 2011 total, which showed a sharp drop in bonus.

2012 Salary Survey Analysis

2012 Salary Survey Results

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.