Advancing Technology: Energy-efficient microchips

Semiconductor industry technology continues to advance despite the current market downturn. Chip energy-efficiency is a major area of development. Energy savings at the micro-scale can be substantial when spread over a vast number of chips. See photos, related links.

04/27/2009


Chip makers offer energy efficient microprocessors


On the 6th anniversary of the AMD Opteron processor, AMD announced what it calls its most energy efficient server processor to date—the Quad-Core AMD Opteron EE processor.

Fortunately for the semiconductor industry, its technology continues to advance despite the current market downturn. Chip energy-efficiency is a major area of development. Energy savings at the micro-scale can be substantial when spread over a vast number of chips, albeit less evident than in larger-scale products. Controllers using such chips can be embedded in myriad applications, leading to the question, “

What’s better than a good microprocessor?

” The answer of late seems to be an energy efficient one.
Transistor efficiency improvements come from hardware (silicon) design, new chip materials, and software enhancements. Savings are realized in one of two ways: 1) less energy consumed from lower current flows enabled by efficient processor circuits or 2) ability to add more functions with little or no increase in power usage and heat generation. For example, Intel Corp . uses cost/benefit analysis to justify adding functions to its newest, energy-efficient chips.
One recent design trend to raise chip productivity and efficiency is to place multiple, independent execution cores on a single silicon die—but without increasing overall processor package size. These multi-core processors (MCPs) permit more flexible, hence inherently more efficient, power distribution over the chip’s sections (see further reading).

Transistor efficiency improvements come from silicon design, new chip materials, and software enhancements.

Advanced Micro Devices (AMD) , IBM , Intel, and Sun Microsystems are among suppliers of MCPs. Newest offerings include Intel’s Xeon processor 5500 series and AMD’s several models of Opteron HE energy-efficient chips. Manufactured using advanced 45-nanometer (nm) process technology, these MCPs feature four cores which deliver improved energy-efficiency. Newer chip architectures also streamline data communication paths that reside all within the processor. AMD claims that server platforms based on Opteron HE processors offer up to 20% lower idle power compared to similarly configured competing systems.
New materials, software
Still, ever-shrinking chip dimensions pose power-wasting current leakage. A major leakage source is the chip’s on/off mechanism—or gate circuit—whose insulation layer has been progressively thinned to raise gate capacitance, required for higher chip performance. One solution is to replace traditional silicon dioxide as the gate insulator with so-called high-k (high dielectric constant) materials, which can be relatively thicker to stop current leakage and still deliver the capacitance needed.
The element hafnium has shown promise to significantly reduce leakage current as part of high-k dielectrics. Intel has introduced hafnium-based transistors combined with metal gates in its 45-nm microchip production. The company claims “a 20% boost in transistor performance” due to the new materials. IBM and its joint development partners are also working with hafnium for chip gates.
Software design can also reduce chip power consumption through more efficient algorithms. Intel’s Xeon processor 5500 series includes “simultaneous multithreading” (SMT), a method that allows two threads to execute per processor core for more energy-efficient performance. SMT offers further benefits as the number of cores per processor increases. Intel attributes substantial processor performance improvement to SMT, depending on the application.

Ever-shrinking chip dimensions pose power-wasting current leakage.

Sun Microsystems adds that particularly when the number of threads becomes large, say 32 or more, the chip’s operating system can deactivate a thread if it encounters an idle process loop. Here’s where thread-scheduling algorithms can become key to efficient spreading of computational loads over different cores.
The latest semiconductors typically see first service in data-intensive computer applications, but savvy designers and developers will be on the lookout for early usage in industrial control systems.
Further reading: Advancing Technology, CE , May `07:

What’s better than a good microprocessor?


Frank J. Bartos , P.E., is a Control Engineering www.controleng.com consulting editor.
For more information, visit
www.amd.com
www.ibm.com/technology
www.intel.com/technology/eep
www.sun.com
– Edited by Mark T. Hoske, editor in chief; Register here .





No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
Hannover Messe 2016: Taking hold of the future - Partner Country status spotlights U.S. manufacturing; Honoring manufacturing excellence: The 2015 Product of the Year Winners
Inside IIoT: How technology, strategy can improve your operation; Dry media or web scrubber?; Six steps to design a PM program
World-class manufacturing: A recipe for success: Finding the right mix for a salad dressing line; 2015 Salary Survey: Manufacturing slump dims enthusiasm
Getting to the bottom of subsea repairs: Older pipelines need more attention, and operators need a repair strategy; OTC preview; Offshore production difficult - and crucial
Digital oilfields: Integrated HMI/SCADA systems enable smarter data acquisition; Real-world impact of simulation; Electric actuator technology prospers in production fields
Special report: U.S. natural gas; LNG transport technologies evolve to meet market demand; Understanding new methane regulations; Predictive maintenance for gas pipeline compressors
Warehouse winter comfort: The HTHV solution; Cooling with natural gas; Plastics industry booming
Managing automation upgrades, retrofits; Making technical, business sense; Ensuring network cyber security
Designing generator systems; Using online commissioning tools; Selective coordination best practices

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
This article collection contains several articles on the vital role that compressed air plays in manufacturing plants.
This article collection contains several articles on the Industrial Internet of Things (IIoT) and how it is transforming manufacturing.
click me