Accommodating bi-directional power flow in substation design

Address aspects of your client’s substation design to accommodate the bi-directional flow of power.

11/06/2012


A consulting specifying engineer with a large commercial/industrial client that is planning to inject power into the grid must address aspects of that client’s substation design to accommodate the bi-directional flow of power.

The power source could be traditional such as thermally generated power or it could be renewable sources such as wind turbines and/or solar photovoltaics–the same issues apply. These distinct design considerations don’t exist for the simpler paradigm of a uni-directional power flow from the utility to the end-user.

The over-riding objective is to satisfy the utility’s need for situational awareness, a degree of visibility it needs to understand and manage how that bi-directional flow will affect its grid.

First, the consulting engineer needs to design for a greater degree of instrumentation in a substation that will handle a bi-directional flow of power. The design also will be influenced by the scale of power flowing onto the grid. If the bi-directional flow never exceeds 1 to 2 MW, situational awareness is achieved one way; if that flow is on the scale of, say, 100 to 200 MW, a different set of design considerations come into play.

The consulting specifying engineer’s first task, then, is to grasp the local utility’s requirements for situational awareness. Early in the substation design process, the consulting engineer needs to sit down with the local utility and understand what data points the latter requires. That could include bus voltages, power injection on the low side of the transformers–any number of data points might be required that, if not included in the initial design, unanticipated costs are likely later in the process.

The utility may even require a degree of control over the operation of the client’s substation in order to curtail power flowing onto the grid, or call for it, or even request volt/var support.

Both the sensors and the controls in this instance have implications for the substation’s communication network as well.

Further, the consulting engineer must not only understand the utility’s needs and requirements and communicate those to his/her client, but he/she may well serve as a mediator between the two parties. It’s best to stay ahead of the curve in order to properly perform design work and communicate and resolve issues affecting both parties.

Utility requirements may include specifying the equipment going into the substation, down to the level of vendor and device. For the situational awareness that a utility needs, it may require specific remote terminal units, or RTUs, and specific protocols to integrate with its SCADA and energy management system (EMS). At higher, transmission-level voltages, the utility may require specific protective relay equipment, again, down to the specific vendor make and model.

Of course, the utility also has safety concerns for its field crews when bi-directional power flows are integrated with the grid. Line crews may have to access the consulting engineer client’s substation to confirm that no power will flow while they’re working on a problem. Thus, utility-side needs will influence the physical design of the consulting engineer client’s substation, even the access controls.

So if you’re engaged by a client planning for or even just contemplating the future use of bi-directional power flows, be aware that a different set of rules apply. Engage with the affected utility at the earliest possible stage. The consulting engineer may find that the utility already has a set of design strategies, rules, and specifications in hand for just such an occasion. If the consulting engineer’s client is considering adding the capability for bi-directional power flow at some point in the future, certain design considerations might be made up-front at a prudent cost rather than incurring greater expense for a later retrofit.

If areas of uncertainty remain, where existing standards don’t apply to the situation, having a face-to-face meeting with the utility’s engineering staff is a must so that the areas in question can be worked out in a manner satisfactory for both sides.

The key is to understand the utility’s requirements and the client’s needs and future plans and ensure that both parties are well-informed and communicating in the early design stages for a successful project, while eliminating uncertainties.


Sam Sciacca is an active senior member in the IEEE and the International Electrotechnical Commission (IEC) in the area of utility automation. He has more than 25 years of experience in the domestic and international electrical utility industries. Sciacca serves as the chair of two IEEE working groups that focus on cyber security for electric utilities: the Substations Working Group C1 (P1686) and the Power System Relay Committee Working Group H13 (PC37.240). Sciacca also is president of SCS Consulting.



No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
Your leaks start here: Take a disciplined approach with your hydraulic system; U.S. presence at Hannover Messe a rousing success
Hannover Messe 2016: Taking hold of the future - Partner Country status spotlights U.S. manufacturing; Honoring manufacturing excellence: The 2015 Product of the Year Winners
Inside IIoT: How technology, strategy can improve your operation; Dry media or web scrubber?; Six steps to design a PM program
Getting to the bottom of subsea repairs: Older pipelines need more attention, and operators need a repair strategy; OTC preview; Offshore production difficult - and crucial
Digital oilfields: Integrated HMI/SCADA systems enable smarter data acquisition; Real-world impact of simulation; Electric actuator technology prospers in production fields
Special report: U.S. natural gas; LNG transport technologies evolve to meet market demand; Understanding new methane regulations; Predictive maintenance for gas pipeline compressors
Warehouse winter comfort: The HTHV solution; Cooling with natural gas; Plastics industry booming
Managing automation upgrades, retrofits; Making technical, business sense; Ensuring network cyber security
Designing generator systems; Using online commissioning tools; Selective coordination best practices

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
This article collection contains several articles on the vital role that compressed air plays in manufacturing plants.
This article collection contains several articles on the Industrial Internet of Things (IIoT) and how it is transforming manufacturing.
This article collection contains several articles on strategic maintenance and understanding all the parts of your plant.
click me