A 'toolbox of technologies’ for sustainability

The targets of opportunity for sustainability improvements can be found in virtually every piece of equipment and among all applications and processes. All the while, the enabling technology “toolbox” for sustainability is rapidly filling up with solutions. Specific and highly practical benefits from proactive sustainability programs can accrue in reduced operating costs; increased ...

02/15/2008


The targets of opportunity for sustainability improvements can be found in virtually every piece of equipment and among all applications and processes. All the while, the enabling technology “toolbox” for sustainability is rapidly filling up with solutions.

Specific and highly practical benefits from proactive sustainability programs can accrue in reduced operating costs; increased productivity and profitability; measurable energy savings and reduced CO2 emissions; improved waste and chemicals management; enhanced equipment reliability; and better health and safety working conditions. Great strides have been made in the evolution of approaches and technologies to help realize these goals.

For example, a dominant trend pertaining to sustainability is a transition from fluid-dependent hydraulics and cumbersome pneumatics to cleaner, more environmentally friendly and simplified electromechanical actuation systems. Mechatronics technology is at the forefront.

Mechatronics for sustainability

Mechatronics delivers motion and control in one package, integrating mechanical and electronic technologies with application-specific software. Compared with hydraulic or pneumatic systems, mechatronics can become especially sustainability-friendly where motion will come into play, such as robotics applications.

The infrastructure required for hydraulic systems necessitates a hydraulic unit, a tank for oil and filter systems and other components; pneumatic-driven systems must rely upon air compressors, compressed air filters and filter systems. In contrast, mechatronic-based systems require only power and control wires to perform. Other issues linked with hydraulics and pneumatics include relatively high costs associated with system assembly and mounting; over time, more maintenance will be necessary; noise levels will be noticeable; and the danger of hydraulic oil leakage will be ever-present. All tend to be inconsistent with sustainability goals and make a strong case for organizations to assess the viability of mechatronics for plant operations.

From data to information

From another technology perspective, data is “king” in any sustainability program for documenting and quantifying progress, supporting decisions and fulfilling mandated obligations for environmental, health and safety compliance reporting. But information is only as good (and useful) as its sources, gathering methods and timeliness. More often than not, excessive time is consumed to collect, analyze, reformat and prepare consistent and uniform reports; multiple (and far-flung) locations, languages and regulations can present unwanted complexities; and incompatible IT platforms and reporting protocols can make communications and reporting all the more challenging.

Solutions have arrived with advances in information technology. These include customized Web-based environmental, health and safety information management systems to extend across geographical, functional and cultural lines and promote consistent regulatory compliance, uniform record keeping and streamlined decision-making and reporting within a manufacturing organization.

Systems can electronically automate key EHS functions including audits, chemicals management, regulatory reporting and sustainability metrics, among others. This can drastically reduce time and money usually spent in collecting, analyzing, reformatting and preparing data. Especially relevant for sustainability, capabilities expand with the opportunity for live CO2 footprint tracking and performance tracking and measurement.

Analysis first

A top-to-bottom energy and environment analysis can serve as a starting point. They can identify areas of high energy consumption and evaluate chemical treatments, lubrication use and other processes to determine environmental risk. Improvements linked to opportunities can be introduced based on remedial action recommendations. Analyses also provide benchmarking data for arriving at realistic objectives and measuring results based on established goals and targets.

Practices to improve reliability and efficiency of assets can pay big dividends in striving toward sustainability success. Regularly monitored and well-maintained equipment can save energy, increase uptime, drive profitability and advance core sustainability objectives.

No panacea

Of course, no “one size fits all” blueprint exists to universally chart the course of sustainability programs. How a particular sustainability effort is devised and implemented will depend on factors ranging from an organization’s culture to its capabilities and ongoing commitment.


Author Information

Bart G. Bartholomew is vice-president of SKF Reliability Systems NA, a business division of SKF USA Inc. He can be reached at (215) 513-4570 or Bart.G.Bartholomew@skf.com .




No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2013 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
The true cost of lubrication: Three keys to consider when evaluating oils; Plant Engineering Lubrication Guide; 11 ways to protect bearing assets; Is lubrication part of your KPIs?
Contract maintenance: 5 ways to keep things humming while keeping an eye on costs; Pneumatic systems; Energy monitoring; The sixth 'S' is safety
Transport your data: Supply chain information critical to operational excellence; High-voltage faults; Portable cooling; Safety automation isn't automatic
Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Plant Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.

Maintaining low data center PUE; Using eco mode in UPS systems; Commissioning electrical and power systems; Exploring dc power distribution alternatives
Synchronizing industrial Ethernet networks; Selecting protocol conversion gateways; Integrating HMIs with PLCs and PACs
Why manufacturers need to see energy in a different light: Current approaches to energy management yield quick savings, but leave plant managers searching for ways of improving on those early gains.

Annual Salary Survey

Participate in the 2013 Salary Survey

In a year when manufacturing continued to lead the economic rebound, it makes sense that plant manager bonuses rebounded. Plant Engineering’s annual Salary Survey shows both wages and bonuses rose in 2012 after a retreat the year before.

Average salary across all job titles for plant floor management rose 3.5% to $95,446, and bonus compensation jumped to $15,162, a 4.2% increase from the 2010 level and double the 2011 total, which showed a sharp drop in bonus.

2012 Salary Survey Analysis

2012 Salary Survey Results

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.