A straightforward maintenance strategy yields improved plant performance

Moving from reactive to preventive maintenance helps Monsanto improve output and reduce costs at its Muscatine plant. Smart field devices and control valve positioners provide critical diagnostic data to reliability engineers, guiding their efforts.

05/04/2013

Flash is required!

Meet the reliability team at Monsanto Muscatine.



Monsanto's Muscatine plant in Southeast Iowa earned the 2012 HART Plant of the Year award. Courtesy: Control EngineeringIn many situations, a straightforward and consistently applied maintenance strategy can have results that attract positive attention as production and plant availability increase while maintenance costs decrease. Such is the case at Monsanto’s Muscatine manufacturing facility. The combination of technical solutions with corresponding work processes has had measurable positive results and earned the facility the 2012 HART Plant of the Year Award.

The Monsanto Muscatine facility is located in southeast Iowa along the Mississippi River. It manufactures Roundup herbicide along with acetanilide select chemistry products, including Harness Xtra, Degree Xtra, and Warrant. The facility covers 150 acres and employs around 450 individuals to operate and manage eight individual process units. These include waste treatment and plant utilities along with the product manufacturing process areas. The majority of the plant operates continuously, year-round, and the oldest parts of the facility date back 50 years.

An inherited maintenance platform

Monsanto's Muscatine plant in Southeast Iowa earned the 2012 HART Plant of the Year award. Courtesy: Control EngineeringThe processing units are controlled by a mix of Emerson DeltaV and Provox DCS (distributed control system) platforms tied to more than 3,200 instrument assets, including transmitters and control valve positioners. Of this total installed base, there are currently over 600 HART and 125 Foundation fieldbus instruments within the facilities AMS Intelligent Device Manager. The outstanding instruments not yet in the AMS Intelligent Device Manager are in large part either not terminated to smart I/O or are simply non-smart devices. One of the pivotal changes in Muscatine’s operation happened in 2006 when Joel Holmes, site electrical reliability engineer, received a standalone Emerson AMS unit from another Monsanto plant. Having access to that unit enabled him to explore some of the capabilities of a more sophisticated maintenance strategy using diagnostic information gathered from field devices using HART Communication and Foundation fieldbus protocols.

Given the facility’s extensive population of maintenance-intensive valves and instrumentation, this was an area where Holmes felt that improvements in reliability would have the largest impact on overall plant performance. Part of the process of integrating his new maintenance tools with the work processes involved assigning a criticality value to the instrument assets in each process unit. Those that could impede production were given the highest priority for monitoring.

As Holmes described the process, “We utilize an A, B, or C letter designation to denote asset criticality. The highest criticality ranking is an A, with the lowest criticality ranking being a C. Keep in mind, A-ranked critical devices will receive the most attention since their performance is crucial to the on-stream time of the production system whereas C-ranked devices may, in many cases, be allowed to run till failure since their impact to the production system is minimal or they have in-line spares.”

Electrical reliability technicians Mike Chaney (left) and Thad Witte follow-up on alerts from AMS to track down problems in the process units before they cause downtime. Courtesy: Control EngineeringAs Monsanto gained experience with AMS, use within the plant became more sophisticated with improvements in overall effectiveness. The Alert Monitor became the primary predictive tool integrating the plant’s asset criticality measure with the Device Manager. The respective device group assignment in turn directly impacts its polling rate, or the frequency at which the Alert Monitor extracts the devices status, health, and diagnostic information from the field.

Over time, Holmes created three groups of devices: transmitters, control valves, and vapor sensors. This helped balance the loading of the Alert Monitor since having too many devices poll at the same frequency overloaded the system, resulting in extremely slow update rates or no response at all. Each device group has a set series of polling rate values dependent upon its criticality ranking.

Working in a legacy environment

This control valve positioner communicates with the process unit’s controller using conventional analog I/O, so there is no capability to read the HART data. Adding the wireless THUM allows the diagnostic information to be visible within the AMS Device MaWhile some of the process units have relatively new control systems with HART-enabled I/O, there are other areas where the system is still plain analog. These will be upgraded as the plant moves through a series of migrations to DeltaV control systems with CHARMS I/O, but in some areas that is still years away. The work-around that the plant has developed to gather diagnostic information involves either WirelessHART THUM communication for critical tags, or HART/Foundation fieldbus handheld communicators for devices that require less frequent monitoring.

The WirelessHART deployment is growing with about 25 devices currently in operation. Holmes expects that number to grow, and each process unit will soon have its own wireless gateway.

A case in point

As the Glyphosate Technicals unit was anticipating a scheduled shutdown for catalyst regeneration, Holmes and his team addressed a planned and scheduled deficiency work order with a two-inch eccentric ball control valve that had been identified as suspect through a prior control valve reliability PM route. The AMS Intelligent Device Manager along with its ValveLink Snap-On application had measured increasing friction as the valve moved through its full span of travel. This indicator suggested a problem was developing and triggered a failure when performing the diagnostic scans on the control valve assembly. While the valve was not exhibiting any issues that would be visible to the operators, the valve signature indicated that the amount of force required to open and close the valve had increased substantially. It was still able to perform its control function for the moment, but comparisons with historical signatures revealed that a more drastic situation was developing.

Operators were unaware that there was a friction problem with the valve since the step response test results were performing normally. The valve was performing its control functions, but it was only a matter of time before the valve would malfunction. Cou

Holmes recommended that the electrical reliability technicians change out the valve during the outage; therefore, the reliability technicians proceeded to remove it from service during that time. When they pulled the valve body free from the flanges, they found a 1/4 x 4 in. bolt stuck in the valve that had apparently come off one of the clamps holding a filter element designed to capture the catalyst. It had been carried down the pipe by the flowing process stream. Had that bolt remained in the valve, at some point it could have initiated flow control issues up to and including the valve refusing to close which would have caused additional problems.

When the AMS Intelligent Device Manager ValveLink Snap-on scan failed, it was clear from the valve signature that there was a serious problem developing. This prompted removal of the valve during the outage.That type of valve normally has a valve signature like this one, where the opening and closing pressures are in a tight group along with the ideal standard performance indicator.

The bolt had damaged the valve's ceramic plug and seat, so once the valve body was removed and separated from the actuator, it was sent out for rebuilding. A new valve body was mounted on the actuator in the shop. Prior to reinstalling the assembly, it was calibrated and then tested with the use of the ValveLink Snap-On application to make sure the valve signature and additional diagnostic scans indicated normal operating parameters using HART. All scans including the valve signature were recorded in AMS so that results can be compared to future analysis in trending for degradation. When approved, the valve was returned to service without delaying the scheduled startup of the process unit.


<< First < Previous 1 2 Next > Last >>

Anonymous , 05/31/13 01:34 PM:

Learn more about incorporating device diagnostics in daily maintenance and turnaround planning from work process guide here:
http://www.eddl.org/DeviceManagement/Pages/DeviceDiagnostics.aspx
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2013 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Leaders Under 40 program features outstanding young people who are making a difference in manufacturing. View the 2013 Leaders here.
The new control room: It's got all the bells and whistles - and alarms, too; Remote maintenance; Specifying VFDs
2014 forecast issue: To serve and to manufacture - Veterans will bring skill and discipline to the plant floor if we can find a way to get them there.
2013 Top Plant: Lincoln Electric Company, Cleveland, Ohio
Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Plant Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.

Bring focus to PLC programming: 5 things to avoid in putting your system together; Managing the DCS upgrade; PLM upgrade: a step-by-step approach
Balancing the bagging triangle; PID tuning improves process efficiency; Standardizing control room HMIs
Commissioning electrical systems in mission critical facilities; Anticipating the Smart Grid; Mitigating arc flash hazards in medium-voltage switchgear; Comparing generator sizing software

Annual Salary Survey

Participate in the 2013 Salary Survey

In a year when manufacturing continued to lead the economic rebound, it makes sense that plant manager bonuses rebounded. Plant Engineering’s annual Salary Survey shows both wages and bonuses rose in 2012 after a retreat the year before.

Average salary across all job titles for plant floor management rose 3.5% to $95,446, and bonus compensation jumped to $15,162, a 4.2% increase from the 2010 level and double the 2011 total, which showed a sharp drop in bonus.

2012 Salary Survey Analysis

2012 Salary Survey Results

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.