A new approach assembles big structures from small interlocking pieces

MIT researchers invent a new approach to assembling big structures — even airplanes and bridges — out of small interlocking composite components. A robotic system for assembly is under development.

08/23/2013


Assemblies of the cellular composite material are seen from different perspectives, showing the repeating MIT researchers have developed a lightweight structure whose tiny blocks can be snapped together much like the bricks of a child’s construction toy--robots will help with construction. The new material, the researchers say, could revolutionize the assembly of airplanes, spacecraft, and even larger structures, such as dikes and levees.

The new approach to construction is described in a paper appearing week of Aug. 11 in the journal Science, co-authored by postdoc Kenneth Cheung and Neil Gershenfeld, director of MIT’s Center for Bits and Atoms.

Gershenfeld likens the structure — which is made from tiny, identical, interlocking parts — to chainmail. The parts, based on a novel geometry that Cheung developed with Gershenfeld, form a structure that is 10 times stiffer for a given weight than existing ultralight materials. But this new structure can also be disassembled and reassembled easily — such as to repair damage, or to recycle the parts into a different configuration.


The individual parts can be mass-produced; Gershenfeld and Cheung are developing a robotic system to assemble them into wings, airplane fuselages, bridges or rockets — among many other possibilities.

In the lab, a sample of the cellular composite material is prepared for testing of its strength properties. Photo courtesy of Kenneth Cheung and MIT according to terms listed here http://web.mit.edu/press/media.html?id=15203.

The new design combines three fields of research, Gershenfeld says: fiber composites, cellular materials (those made with porous cells) and additive manufacturing (such as 3-D printing, where structures are built by depositing rather than removing material).

With conventional composites — now used in everything from golf clubs and tennis rackets to the components of Boeing’s new 787 airplane — each piece is manufactured as a continuous unit. Therefore, manufacturing large structures, such as airplane wings, requires large factories where fibers and resins can be wound and parts heat-cured as a whole, minimizing the number of separate pieces that must be joined in final assembly. That requirement meant, for example, Boeing’s suppliers have had to build enormous facilities to make parts for the 787.

Pound for pound, the new technique allows much less material to carry a given load. This could not only reduce the weight of vehicles, for example — which could significantly lower fuel use and operating costs — but also reduce the costs of construction and assembly, while allowing greater design flexibility. The system is useful for “anything you need to move, or put in the air or in space,” says Cheung, who will begin work this fall as an engineer at NASA’s Ames Research Center.

The concept, Gershenfeld says, arose in response to the question, “Can you 3-D print an airplane?” While he and Cheung realized that 3-D printing was an impractical approach at such a large scale, they wondered if it might be possible instead to use the discrete “digital” materials that they were studying.

“This satisfies the spirit of the question,” Gershenfeld says, “but it’s assembled rather than printed.” The team is now developing an assembler robot that can crawl, insectlike, over the surface of a growing structure, adding pieces one by one to the existing structure.

In traditional composite manufacturing, the joints between large components tend to be where cracks and structural failures start. While these new structures are made by linking many small composite fiber loops, Cheung and Gershenfeld show that they behave like an elastic solid, with a stiffness, or modulus, equal to that of much heavier traditional structures — because forces are conveyed through the structures inside the pieces and distributed across the lattice structure.

What’s more, when conventional composite materials are stressed to the breaking point, they tend to fail abruptly and at large scale. But the new modular system tends to fail only incrementally, meaning it is more reliable and can more easily be repaired, the researchers say. “It’s a massively redundant system,” Gershenfeld says.

Cheung produced flat, cross-shaped composite pieces that were clipped into a cubic lattice of octahedral cells, a structure called a “cuboct” — which is similar to the crystal structure of the mineral perovskite, a major component of Earth’s crust. While the individual components can be disassembled for repairs or recycling, there’s no risk of them falling apart on their own, the researchers explain. Like the buckle on a seat belt, they are designed to be strong in the directions of forces that might be applied in normal use, and require pressure in an entirely different direction in order to be released.

The possibility of linking multiple types of parts introduces a new degree of design freedom into composite manufacturing. The researchers show that by combining different part types, they can make morphing structures with identical geometry but that bend in different ways in response to loads: Instead of moving only at fixed joints, the entire arm of a robot or wing of an airplane could change shape.

In addition to Gershenfeld and Cheung, the project included MIT undergraduate Joseph Kim and alumna Sarah Hovsepian (now at NASA’s Ames Research Center). The work was supported by the Defense Advanced Research Projects Agency and the sponsors of the Center for Bits and Atoms, with Spirit Aerosystems collaborating on the composite development.

Massachusetts Institute of Technology (MIT)

web.mit.edu 

Images in this article are subject to the MIT terms shown here: http://web.mit.edu/press/media.html?id=15203.

- Edited by CFE Media. See more Control Engineering robotics articles.



No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2013 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Leaders Under 40 program features outstanding young people who are making a difference in manufacturing. View the 2013 Leaders here.
The new control room: It's got all the bells and whistles - and alarms, too; Remote maintenance; Specifying VFDs
2014 forecast issue: To serve and to manufacture - Veterans will bring skill and discipline to the plant floor if we can find a way to get them there.
2013 Top Plant: Lincoln Electric Company, Cleveland, Ohio
Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Plant Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.

Bring focus to PLC programming: 5 things to avoid in putting your system together; Managing the DCS upgrade; PLM upgrade: a step-by-step approach
Balancing the bagging triangle; PID tuning improves process efficiency; Standardizing control room HMIs
Commissioning electrical systems in mission critical facilities; Anticipating the Smart Grid; Mitigating arc flash hazards in medium-voltage switchgear; Comparing generator sizing software

Annual Salary Survey

Participate in the 2013 Salary Survey

In a year when manufacturing continued to lead the economic rebound, it makes sense that plant manager bonuses rebounded. Plant Engineering’s annual Salary Survey shows both wages and bonuses rose in 2012 after a retreat the year before.

Average salary across all job titles for plant floor management rose 3.5% to $95,446, and bonus compensation jumped to $15,162, a 4.2% increase from the 2010 level and double the 2011 total, which showed a sharp drop in bonus.

2012 Salary Survey Analysis

2012 Salary Survey Results

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.