60 megawatts of energy produced from landfill gas

HMI, SCADA, controllers from GE Fanuc Intelligent Platforms used to recover methane gas and convert it to electricity.

07/01/2009


GE Fanuc Intelligent Platforms’ customer Innovative Energy Systems (IES) has developed a clean energy solution that recovers methane gas from landfills and converts it into electricity as an alternative energy source. The solution uses GE Fanuc Intelligent Platforms’ controllers, HMI/SCADA software and operator interface equipment to facilitate the processing of the gas and keep the system running efficiently and effectively, providing IES with a sustainable and competitive advantage.
IES, headquartered in New York state, has nine power plants in New York and Vermont, producing more than 60 megawatts of capacity with more than 25 additional megawatts coming online over the next two years. In addition to its own facilities, the company also designs and constructs plants using this innovative system for other companies.
IES uses GE Fanuc controllers on its proprietary gas collection and scrubber unit and other equipment used to collect and process the gas. GE Fanuc’s QuickPanel View and Proficy HMI/SCADA– Cimplicity monitor kilowatt-hours produced, display engine diagnostics, fuel flow and quality. This solution also provides an overview of the gas scrubbing system operation. IES plant managers use the system on a daily basis to monitor the engines and gas scrubbing system. This information allows the plant managers to complete preventative maintenance, limiting downtime on the engines. Information provided by the system includes: generator loading and unloading, alarm history, engine diagnostics including engine hours, oil temp and pressure, jacket water temp and pressure, fuel flow and quality, and exhaust port temperatures.
Beyond providing energy from landfill gas, IES is also using the waste heat generated from jacket water and engine exhaust to heat a 12-acre greenhouse facility that produces vine-ripened, hydroponic tomatoes. The heat generated is transferred in continuous loop from heat exchangers at the company’s power plants to the heat exchangers at the greenhouse. Because of the unique way in which the plants are grown, they have a growth season which lasts approximately eight to nine months, allowing the greenhouse to produce more than 6 million pounds of tomatoes annually.
How IES converts methane into electricity
Landfill gases are colorless vapors produced at solid waste landfills where trash and garbage are buried in the ground and covered with dirt. Over time, bacteria in the soils will break down organic wastes in the landfill. The by-product of these bacteria breaking down the garbage will produce gases. The amount and type of landfill gas depends on a number of factors such as the amount of garbage buried, the age of the landfill, the depth of the landfill, and the chemical environment inside the landfill.
Landfill gas consists of methane, carbon dioxide, and hydrogen sulfide. Methane is a very potent greenhouse gas that is a key contributor to global climate change, over 21 times more potent than carbon dioxide. Methane also has a short, 10-year, atmospheric life. Because methane is both potent and short-lived, reducing methane emissions from municipal solid waste landfills, the second largest source of methane in the United States, is one of the best ways to achieve a near-term beneficial impact in mitigating global climate change.
It is estimated that landfill gas to energy projects will capture roughly 60 to 90% of the methane emitted from the landfill, depending on system design and effectiveness. The gas is collected and conveyed using a system of vertical and horizontal wells and a positive displacement blower to the landfill gas to energy facility. Prior to the landfill gas going to the internal combustion engines it is processed through IES’ proprietary gas scrubbing system, which has been designed and developed to provide low maintenance, extended life to the internal combustion engines. The scrubbing system cools the gas and uses dehydration process, which removes particulates and water that otherwise, would have harmed the engines. After the landfill gas is processed through the scrubbing system is it delivered to the internal combustion engines where the captured methane is destroyed, converted to water and a much less potent carbon dioxide, when the gas is burned to produce electricity.
Read other Control Engineering articles on using landfill gas for energy:

– Edited by David Greenfield , editorial director

Control Engineering Sustainable Engineering News Desk

Register here .





No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2013 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
The true cost of lubrication: Three keys to consider when evaluating oils; Plant Engineering Lubrication Guide; 11 ways to protect bearing assets; Is lubrication part of your KPIs?
Contract maintenance: 5 ways to keep things humming while keeping an eye on costs; Pneumatic systems; Energy monitoring; The sixth 'S' is safety
Transport your data: Supply chain information critical to operational excellence; High-voltage faults; Portable cooling; Safety automation isn't automatic
Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Plant Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.

Maintaining low data center PUE; Using eco mode in UPS systems; Commissioning electrical and power systems; Exploring dc power distribution alternatives
Synchronizing industrial Ethernet networks; Selecting protocol conversion gateways; Integrating HMIs with PLCs and PACs
Why manufacturers need to see energy in a different light: Current approaches to energy management yield quick savings, but leave plant managers searching for ways of improving on those early gains.

Annual Salary Survey

Participate in the 2013 Salary Survey

In a year when manufacturing continued to lead the economic rebound, it makes sense that plant manager bonuses rebounded. Plant Engineering’s annual Salary Survey shows both wages and bonuses rose in 2012 after a retreat the year before.

Average salary across all job titles for plant floor management rose 3.5% to $95,446, and bonus compensation jumped to $15,162, a 4.2% increase from the 2010 level and double the 2011 total, which showed a sharp drop in bonus.

2012 Salary Survey Analysis

2012 Salary Survey Results

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.