3D: Adding to additive’s capabilities

Technology makes new materials, new designs possible.


The use of rapid prototyping to help improve the manufacturing process is one of the ways Pratt & Whitney utilizes 3D printing. Courtesy: Pratt & Whitney3D printing has gone mainstream. You can buy personal 3D printers at the end caps at Wal-Mart and Home Depot. In the two years since Plant Engineering reported on the coming proliferation of 3D printing—or additive manufacturing, as it is more properly called—the technology is becoming more visible to a wider audience.

We’re not quite at a 3D printer on every engineer’s desk. Yet. But Lynn Gambill and her team are working on it.

“We are buying various desktop or tabletop versions to bring to the designers here,” said Gambill, the chief engineer for manufacturing engineering and global services at aerospace manufacturer Pratt & Whitney. “They are in a lot of places. The cost of printers has gone down, making them available to so many different people. It’s a great visual aid in designing parts.”

Aerospace in general and Pratt & Whitney in particular have been on the cutting edge of additive manufacturing. The technology accelerated the transition from CAD drawings to manufacturing parts and gives designers a faster, cheaper way to puts new parts into production.

Gambill said the development of 3D CAD drawings already was a huge step forward. Additive manufacturing is one more giant leap. “Now a designer can create a 3D file and make a prototype part in short period of time,” she said. “You can do simple fit checks, and when you’re ready to interface with tooling, you also can make your tool.

“Parts can be made quickly, but they also can be made in a way that is very cost-effective for us,” said Gambill. “With additive, you can make parts and combine multiple details into the design. It’s certainly a benefit in terms of costs.”

On the leading edge

Local Motors is a collaborative auto design shop on the cutting edge of the 3D revolution. The company, with operations in Phoenix, Las Vegas, and Knoxville, Tenn., brought its 3D expertise to the 2014 IMTS Show in Chicago to print an entire car from front to back during the six days of the show. On the final day of the show, Local Motors CEO Jay Rogers and Association for Manufacturing Technology CEO Doug Woods drove the finished car out of McCormick Place.

The work leading up to that event highlights the leaps additive manufacturing is making. “There are a lot of kinks that have to be figured out,” said Justin Fishkin, chief strategy officer for Local Motors. “We didn’t even know we wanted to 3D print a car at the show. When we first started to print a large-scale unibody for the car, it took 180 hours. When we got to Chicago, it was down to 44 hours. That’s a huge efficiency.”

Additive manufacturing is one part of the way Local Motors is looking to expand its business as a custom car manufacturer. “We are on sort of the leading edge of the maturity of 3D. It’s at the beginning, but it has a long way to do.

The next step in the use of additive manufacturing is to begin by designing products to take advantage of the unique manufacturing capabilities of 3D printing. Courtesy: Pratt & WhitneyWe’re just scratching the surface. The traditional manufacturing capabilities always will have their place. They always will need each other. Things always will need to be welded. We’re just widening the tool set.”

While this is a time of great change in manufacturing, that change is happening in steps. Just as 3D printing takes place layer by layer, so is the growth of the industry. For Local Motors, that means continuing to prove out the capabilities.

“Right now, our business is about economies of scope as opposed to economies of scale,” Fishkin said.

That’s the same strategy they’re using at Pratt & Whitney. The company is moving additive manufacturing from the prototype stage to creating finished parts for its engines. On the journey to this next phase, the company has changed not only its manufacturing process, but also the parts themselves.

“We’ve been spending a lot of time training on design for additive manufacturing so we can try to learn what additive can and can’t do,” Gambill said. “It’s allowing designers to think about production without any of the prior manufacturing restrictions. You can make thin walls without having to worry about shape complexity. It gives designers a chance to imagine what the part might look like instead of what it historically has looked like. What you’ll start to see more and more—and not just in aerospace—is that the shapes of parts could look very different.”

Collaborative testing

The use of additive manufacturing at Pratt & Whitney extends beyond the part design to the material properties of the part itself. By combining various metal powders and new designs, the design team can fundamentally change the size, shape, and weight of engine parts. That can reduce cost, improve performance, and create lighter, stronger parts that will reduce fuel consumption.

“We’re now launching design teams for additive,” Gambill said. “When you design for additive manufacturing, you have the opportunity to take weight out of the part. It can drive the weight down rather substantially. If the engine weighs less, it uses less fuel. It all factors into the total cost of ownership.”

At Local Motors, the 3D printer has become integral to the design process. “One of the critical bottlenecks is that for a while, it’s been designers and engineers working on the same CAD model. Now they can communicate directly to the machine,” Fishkin said. “ It’s almost in real time, and we all can be working on the same model. If we don’t like way something performs, we print and try again. We don’t have to retool.”

That system allows not just for ongoing tweaking of part design, but also to test several variations of plastics, alloys, and metals in different combinations in the same part design with just one pass of the 3D printer. The parts may all look the same, but their physical makeup can be different.

The process of printing a complete car chassis at the 2014 IMTS Show was accomplished in 44 hours. Courtesy: IMTSStrategic expansion

Throughout the development of additive manufacturing, the technology has been seen as complementary to the traditional machine tool and CNC industry, and Gambill doesn’t see that changing. In fact, she said additive actually enhances the tooling process. “It’s not just about the parts themselves. There’s the tooling aspect, and they go hand-in-hand,” she said. “It starts really with powders, the controls, everything working to produce a part in semi-finished shape. Then it goes to downstream processing. In an operational environment, the goal is to have everything co-located and to create an operational value stream that is very effective.”

If the technology behind additive manufacturing is just now reaching store shelves, the strategic use of additive to advance manufacturing goals continues. “It’s not just a conversation about buying a piece of equipment,” Gambill said. “It’s about understanding what you’re able to achieve with material properties, and to achieve the design properties you need for a gas turbine engine.”

The collaborative nature of what digital manufacturing can do is important to Local Motors. The company is working with educational and government entities top help stay on the leading edge of research and technology around additive manufacturing. Fishkin sees a network of 100 microfactories all over the world, capable of producing 3D cars ready for the road, all printed off the same CAD drawing but deliverable anywhere there is a printer.

He also knows that network, and that world, is still some time away. It is coming, but layer by layer. “It’s going to be a long time before we’re printing critical parts for a car at home,” he said. “You’ll see people using it for fun stuff at home, and eventually we’ll be able to do more serious things.”

- Bob Vavra, content manager, CFE Media, bvavra@cfemedia.com 

The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
Doubling down on digital manufacturing; Data driving predictive maintenance; Electric motors and generators; Rewarding operational improvement
2017 Lubrication Guide; Software tools; Microgrids and energy strategies; Use robots effectively
Prescriptive maintenance; Hannover Messe 2017 recap; Reduce welding errors
The cloud, mobility, and remote operations; SCADA and contextual mobility; Custom UPS empowering a secure pipeline
Infrastructure for natural gas expansion; Artificial lift methods; Disruptive technology and fugitive gas emissions
Mobility as the means to offshore innovation; Preventing another Deepwater Horizon; ROVs as subsea robots; SCADA and the radio spectrum
Research team developing Tesla coil designs; Implementing wireless process sensing
Commissioning electrical systems; Designing emergency and standby generator systems; Paralleling switchgear generator systems
Natural gas engines; New applications for fuel cells; Large engines become more efficient; Extending boiler life

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
The maintenance journey has been a long, slow trek for most manufacturers and has gone from preventive maintenance to predictive maintenance.
Featured articles highlight technologies that enable the Industrial Internet of Things, IIoT-related products and strategies to get data more easily to the user.
This digital report will explore several aspects of how IIoT will transform manufacturing in the coming years.
Maintenance Manager; California Oils Corp.
Associate, Electrical Engineering; Wood Harbinger
Control Systems Engineer; Robert Bosch Corp.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me