Why do we call it loop tuning?

If a process can stick to the setpoint, isn't that enough?

07/29/2011


Dear Control Engineering: Why do we call it loop "tuning?"

The word tuning can be used in various contexts. We talk about tuning a guitar or piano (but not a fish) so the pitches are correct and harmonious. Back in more analog days, we had to tune the radio to get it on a given station for highest fidelity and reduce interference. We also use the term to describe getting a controller to make a process run in the way we want it to. It suggests an action that requires finesse and ongoing adjustment.

Making a process run the way we want it to requires some thought as to what is supposed to happen. Consider this illustration: My sister used to live near Pasadena, CA. I remember visiting her and spending some time in the part of town where the Tournament of Roses Parade passes through. There was a colored line painted down the street, and she told me that line was put there so the parade float drivers know how to steer. Since most can’t see out the front, they watch the line through the bottom and steer so as to keep the float centered over the line. This always gives them the optimal position in the street.

The line takes corners very gently with the widest possible radius so as to preclude any violent maneuvering. I suspect the turning radius of a parade float isn’t very tight. It isn’t something that could make a u-turn or parallel park easily. Steering actions are probably precise but minimal, however that is all that is required to drive the parade route. The driver’s objective is to make the float move gracefully.

Contrast that with a different image. Picture a narrow, winding mountain road with craggy rocks on one side and a sheer cliff on the other. The line down this road was painted by a man who’d had too much to drink and tends to wander even more than the road. If you had to drive down this road at 40 mph and all you could see was the line, you probably wouldn’t want to do it in a parade float. The float’s limited steering would not allow you to make turns sharp enough to avoid hitting the rocks or going off the cliff. Here you need a driver that can make very fast reactions with a vehicle that can make sharp turns.

When we say we want a controller to regulate a process, it’s like saying we want the vehicle to stay on the line. However some processes operate like the parade and others are more like the mountain road. Some are stable due to process inertia. Let’s say you have a one-inch pipe coming out of a tank that can hold 100,000 gal. of water. Pressure is provided only by gravity. The pipe has a flowmeter and a control valve configured such that you can set it for a constant flow of 5 gpm. Water comes into the tank from a source that can vary from 2 to 20 gpm. Even if the input to the tank is behaving erratically, the tank’s volume will dampen those changes and the control loop regulating the output will see very slow changes in pressure. It can operate like the parade float and should be tuned in a way that will make adjustments slow and precise.

As an alternative, consider the same scenario where the tank is 50 gal. If the supply is erratic, the level in the tank could change very quickly which will make the pressure feeding the valve change quickly. Here the controller regulating our flow loop would have to make more violent adjustments to compensate and keep output stable. Theoretically, the same controller, flowmeter, and control valve could suffice in both situations because they can be tuned to change the nature of the response. Understanding how the P, I, and D factors interact to control the action in a specific process context is the skill of a loop tuner. Process conditions and objectives change from situation to situation, so each requires its own adjustment for optimal performance.

Vance VanDoren has written extensively on the topic of PID tuning. One of my favorites is The Three Faces of PID.

Peter Welander, pwelander@cfemedia.com



No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
Your leaks start here: Take a disciplined approach with your hydraulic system; U.S. presence at Hannover Messe a rousing success
Hannover Messe 2016: Taking hold of the future - Partner Country status spotlights U.S. manufacturing; Honoring manufacturing excellence: The 2015 Product of the Year Winners
Inside IIoT: How technology, strategy can improve your operation; Dry media or web scrubber?; Six steps to design a PM program
Getting to the bottom of subsea repairs: Older pipelines need more attention, and operators need a repair strategy; OTC preview; Offshore production difficult - and crucial
Digital oilfields: Integrated HMI/SCADA systems enable smarter data acquisition; Real-world impact of simulation; Electric actuator technology prospers in production fields
Special report: U.S. natural gas; LNG transport technologies evolve to meet market demand; Understanding new methane regulations; Predictive maintenance for gas pipeline compressors
Warehouse winter comfort: The HTHV solution; Cooling with natural gas; Plastics industry booming
Managing automation upgrades, retrofits; Making technical, business sense; Ensuring network cyber security
Designing generator systems; Using online commissioning tools; Selective coordination best practices

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
This article collection contains several articles on the vital role that compressed air plays in manufacturing plants.
This article collection contains several articles on the Industrial Internet of Things (IIoT) and how it is transforming manufacturing.
This article collection contains several articles on strategic maintenance and understanding all the parts of your plant.
click me