Wanted: Female engineers

The number of female engineers is low. As engineering professionals, we need to ensure we’re engaging more young women—and mentoring recent engineering graduates—to help bolster these numbers.

11/19/2013


At the risk of sounding like a feminist from the 1960s, I’m going to diverge from the technical topics usually covered here, and discuss women in engineering. If you don’t think this is a business issue worthy of this space, please read on. If you feel this is an important topic, please read on.

 

An “It’s the Economy” article by Catherine Rampell in the Oct. 27 New York Times made an interesting connection between the growing number of students wanting to become forensic scientists and the TV show “CSI.” Rampell’s example discussed a young girl who liked science and watched CSI. One of the girl’s teachers suggested she attend an 8-week computer science program with Girls Who Code. After completing the course, the young lady decided to major in computer science, a previously unknown career option. I’d love to see more engineering programs like this that engage students while they’re young, and excite them about the prospect of being an engineer. Right now, women make up only 10.5% of employed engineers in the United States, according to data from the Society of Women Engineers. That number is too low, and youngsters need to be engaged earlier.

 

The Executives' Club of Chicago event on Oct. 31, 2013. A short time after reading this article, I attended The Executives’ Club of Chicago breakfast roundtable, in which five women in high-ranking tech jobs spoke about the various aspects of being a female scientist or engineer. They cited statistics that—while I knew to be a national issue—I didn’t realize were so startling. For example, science, technology, engineering, and math (STEM) jobs will grow in leaps and bounds over the next several years. According to a report by myCollegeOptions and STEMconnector, the estimated STEM workforce will grow to 8.65 million workers by 2018 (up from 7.4 million in 2012). Also interesting: “By 2018, the bulk of STEM jobs will be in computing (71%) followed by traditional engineering (16%), physical sciences (7%), life sciences (4%), and mathematics (2%).” We must encourage more women to get involved in STEM-related careers, many of which have valuable benefits beyond the relatively high compensation levels.

 

According to Science and Engineering Indicators 2012 from the National Science Foundation:

  • Women constituted 38% of employed individuals with a highest degree in a science and engineering (S&E) field in 2008, but their proportion is smaller in most S&E occupations.
  • From 1993 through 2008, growth occurred in both the share of workers with a highest degree in an S&E field who are women (increasing from 31% to 38%) and the share of women in S&E occupations (increasing from 21% to 26%).
  • Female scientists and engineers are concentrated in different occupations than are men, with relatively high shares of women in the social sciences (53%) and biological and medical sciences (51%), and relatively low shares in engineering (13%) and computer and mathematical sciences (26%).

 

Still, this growth isn’t nearly enough—we need more women in engineering. We need more female role models and mentors, and we need to remove the barriers young girls may face when considering STEM degrees so that they can be the engineering leaders of tomorrow.

 

And women are making more financial decisions. Refer to any financial or general news magazine, and you’ll see that women (especially those in households in which they’re the primary breadwinner) are making more financial choices and have greater buying power in everything from electronics to household supplies to NFL merchandise.

 

Your task? Engage and encourage more women to be engineers, and to be on your engineering team. Looking strictly at the return on investment, data compiled by research group Catalyst in 2012 showed women held 16.6% of board seats at Fortune 500 companies. Companies whose boards are made up of at least a third women make 42% more.



William , , 11/20/13 10:41 AM:

Valuing the diversity of our various workers is right and good. Pursuing diversity is always bad. There is a difference between the two.

Let women decide for themselves if they want to get into engineering. Who says that 10.5% is "too low"? By what standard? What gender do you have to be to design a better brake pad? What color do you need to be to run a lab test? What hair color contributes better to performing thermodynamic calculations? The answer to all: those physical features contribute nothing to performing in an organization. We are wasting time and money to pursue physical diversity, when what we need are skills and talents.
Kolby , UT, United States, 11/27/13 02:07 PM:

Thank you William, I couldn't have said it better myself.

Overall I found this article having a very weak, if not a completely lacking, argument as to why STEM fields need this large diversity. Those who continue to push this agenda of social engineering, simply respond to this that "diversity is good for everyone" without defining the optimal "diversified system" that achieves this "good".

I've found that those who can't provide good evidence to support their hypothesis often have some other motives in mind other than what they claim. And based on the fact that a government wants to push the issue you can bet that there are some socio-political motivators involved here. Some that perhaps, we as a society aren't willing to embrace and hence the lack of a cognitive response to why this diversity is "good" for us.
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2013 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Leaders Under 40 program features outstanding young people who are making a difference in manufacturing. View the 2013 Leaders here.
The new control room: It's got all the bells and whistles - and alarms, too; Remote maintenance; Specifying VFDs
2014 forecast issue: To serve and to manufacture - Veterans will bring skill and discipline to the plant floor if we can find a way to get them there.
2013 Top Plant: Lincoln Electric Company, Cleveland, Ohio
Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Plant Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.

Bring focus to PLC programming: 5 things to avoid in putting your system together; Managing the DCS upgrade; PLM upgrade: a step-by-step approach
Balancing the bagging triangle; PID tuning improves process efficiency; Standardizing control room HMIs
Commissioning electrical systems in mission critical facilities; Anticipating the Smart Grid; Mitigating arc flash hazards in medium-voltage switchgear; Comparing generator sizing software

Annual Salary Survey

Participate in the 2013 Salary Survey

In a year when manufacturing continued to lead the economic rebound, it makes sense that plant manager bonuses rebounded. Plant Engineering’s annual Salary Survey shows both wages and bonuses rose in 2012 after a retreat the year before.

Average salary across all job titles for plant floor management rose 3.5% to $95,446, and bonus compensation jumped to $15,162, a 4.2% increase from the 2010 level and double the 2011 total, which showed a sharp drop in bonus.

2012 Salary Survey Analysis

2012 Salary Survey Results

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.