Using HVAC and lighting demand response

Strategies for handling DR fall into two basic categories: standby generation and load curtailment.

03/11/2013


 

Figure 2: HVAC DR requires recovery time, which may affect occupant comfort and decrease productivity. Courtesy: Lutron Electronics

Part I of our series on demand response (DR) strategies, introduced the goal of a commercial DR strategy. This article discusses how strategies for handling DR fall into two basic categories: standby generation and load curtailment (also known as load shed). Let's start with a discussion about load curtailment. According to a 2003 Dept. of Energy (DOE) survey, lighting and HVAC together account for two-thirds of the electrical power usage in a typical office building. That is good news, since lighting and HVAC also are best suited to being controlled by a responsive and programmable DR system, and should be first and second on a list of curtailment strategies. 

Despite the fact that annually, lighting and HVAC electricity use is virtually equal, HVAC curtailment is often the only DR strategy used in a building. Theoretically, this makes perfect sense since demand peaks are usually associated with outside climate conditions that closely mirror the HVAC demand. In other words, the warmer the outside air temperature, the more electricity it takes to cool the building—and the cooler the outside temperature, the more electricity it takes to heat the building. Therefore, during peak demand HVAC typically accounts for the larger share of power usage. 

This leads back to the risk-reward proposition that a faster reaction time equals greater reward. HVAC accounts for the larger share in a demand event, but with that come multiple DR management considerations including predictability and responsiveness. HVAC is weather-dependent, so predictability is limited. After all, it is difficult to predict how cold or warm it will be next April 3. And HVAC has to manage the relationship between three variables: temperature, ventilation, and humidity. HVAC does not respond either immediately or proportionately when you change settings. The thermal mass of the building is highly complex and has tremendous momentum: There is an extensive lag time between a change to the HVAC setting and the desired result. Reversing HVAC is like trying to reverse a moving train—it's a gradual process. HVAC also has a recovery time to account for. Radical adjustments can produce unintended peaks, which may be worse than no load shed at all. 

Figure 3: Lighting DR requires no recovery time and results in very little change to occupant comfort or productivity during the demand event.

Lighting control: Linear, responsive DR strategy

So what about lighting? As we mentioned before, lighting and HVAC are almost equal in yearly power usage, but lighting use is not climate driven. Day-to-day, lighting is essentially constant, much the same at 9 a.m. as it is at 3 p.m. with only slight deviations as a result of daylight harvesting. Even with daylight harvesting, algorithms can effectively calculate and account for the angle and arc of the sun in respect to a building's exact location, making lighting levels even more predictive. As opposed to HVAC, lighting is linear and highly responsive. Lighting power is simply the product of voltage and current, and since the voltage is steady there is only one variable—current. Reduce current and lights go down; increase current and lights go up. The speed at which you take current away or put it back is the speed at which the lights change, making lighting easier to manage than HVAC. It is the predictive nature of lighting along with its linear response that make it such a useful demand strategy, especially as a means of quickly contributing to response levels that HVAC can achieve only over time. 

Occupant productivity is always an issue with demand events (see Figures 2 and 3). This is probably the biggest reason on-site generation is used more than curtailment. On-site generation consumes resources and contributes to faster equipment degradation but will not negatively impact productivity. Lighting, on the other hand, works in conjunction with the marvelous, innate qualities of the human eye. The pupil naturally expands to counter a decrease in light. A study by the Lighting Research Center, Rensselaer Polytechnic Institute, has shown that most occupants will not detect a gradual change in light level such as a 15%-20% decrease in light output. Gradual, slow, and steady changes over a few seconds are offset by the eyes’ natural capabilities and will have no impact on productivity. Part III of our series will cover federal and local legislation, and the future of DR.


Scott Ziegenfus is a senior applications engineer with Lutron Electronics Co. Inc. Ziegenfus has an electrical engineering degree from Lafayette College. He is an educational programs chair and board member for the Delaware Valley Chapter of the U.S. Green Building Council and is a certified LEED Study Guide Facilitator. Ziegenfus also serves on ASHRAE standards committees SPC 201P–Facility Smart Grid Information Model and SSPC 135–BACnet.



The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
Doubling down on digital manufacturing; Data driving predictive maintenance; Electric motors and generators; Rewarding operational improvement
2017 Lubrication Guide; Software tools; Microgrids and energy strategies; Use robots effectively
Prescriptive maintenance; Hannover Messe 2017 recap; Reduce welding errors
The cloud, mobility, and remote operations; SCADA and contextual mobility; Custom UPS empowering a secure pipeline
Infrastructure for natural gas expansion; Artificial lift methods; Disruptive technology and fugitive gas emissions
Mobility as the means to offshore innovation; Preventing another Deepwater Horizon; ROVs as subsea robots; SCADA and the radio spectrum
Research team developing Tesla coil designs; Implementing wireless process sensing
Commissioning electrical systems; Designing emergency and standby generator systems; Paralleling switchgear generator systems
Natural gas engines; New applications for fuel cells; Large engines become more efficient; Extending boiler life

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
The maintenance journey has been a long, slow trek for most manufacturers and has gone from preventive maintenance to predictive maintenance.
Featured articles highlight technologies that enable the Industrial Internet of Things, IIoT-related products and strategies to get data more easily to the user.
This digital report will explore several aspects of how IIoT will transform manufacturing in the coming years.
Maintenance Manager; California Oils Corp.
Associate, Electrical Engineering; Wood Harbinger
Control Systems Engineer; Robert Bosch Corp.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me