U.S. District Courthouse for the Northern District of Iowa

New construction; U.S. District Courthouse for the Northern District of Iowa; KJWW Engineering Consultants


This image shows the entrance to the U.S. District Courthouse for the Northern District of Iowa in Cedar Rapids. Courtesy: KJWW Engineering ConsultantsEngineering firm: KJWW Engineering Consultants
2013 MEP Giants rank:
U.S. District Courthouse for the Northern District of Iowa
Cedar Rapids, Iowa, United States
Building type:
Project type:
New construction
Engineering services:
Code Compliance, Electrical/Power, HVAC
Project timeline:
April 2009 to July 2012
Engineering services budget:
MEP budget:
$1.48 million


The new 287,600-sq-ft LEED Gold federal courthouse in Cedar Rapids presented many challenges due to the often-competing security and sustainability requirements of the General Services Administration (GSA). At the same time, KJWW needed to make sure the systems designed to address these challenges did not undermine the architect’s “Big ideas of the building,” which included a 59,675-sq-ft glass curtain wall facing north and a spacious atrium in the center which splits the building into two distinct sides. The GSA mandated that the building be extremely energy efficient, using no more than 55 kBtu/sq ft each year. The GSA’s security criteria, meanwhile, included such items as enhanced steel reinforcements and systems with greater-than-normal energy use, such as security-based lighting and continuously-running dedicated ventilation for holding cells and mail room.

The most overlap between security, HVAC design, and sustainability occurred in the air distribution design. The GSA’s Facilities Standards for the Public Buildings Service (PBS P100) requires that no air handling unit (AHU) can be larger than 25,000 cfm and no unit can serve more than one floor. With 287,600 sq ft over eight floors, split in two sides (courtroom side and tenant side), there had to be an AHU for each floor on each side (16 total AHUs). In addition, code required each AHU to bring in outside ventilation air, but the GSA’s anti-terrorism standards do not allow for any air intake below the 4th floor, and the architect did not want any air intake or relief on any exterior walls. Traditional mixed air AHUs normally would have air economizers, which bring in air from the outside to condition the building when outside air conditions are right. For the courthouse, this would have required each floor’s AHU to be ducted to the roof. With all the required AHUs, such a system would have a far greater need for mechanical room space, something that was not cost effective where floor space was at a premium and being built at $300 to $400 per sq ft.


To meet the GSA’s energy efficiency goals and security requirements and not compromise key architectural features, KJWW developed two key solutions which were supported through energy modeling evaluations by The Weidt Group:

  1. Elimination of the outside air capability for all AHUs and installation of a completely decoupled dedicated outside air system. Two units on the ground floor have the sole purpose of providing outside air for the building. They draw in air from the roof, condition it, and send it through the building for ventilation air. They also take all the air that they put into the building, bring it back to the units, and exhaust the air at grade level. The outside air coming in and the exhaust air going out exchange energy through enthalpy wheels (another energy-saving measure).

  2. The use of water economizers instead of air economizers for the AHUs. Water economizers create chilled water by routing the chiller system condenser water outdoors to be cooled by the cold ambient air, and then use that cold water to cool the indoor system chilled water via a heat exchanger. The system creates chilled water in the winter without having to run mechanical cooling. Water economizers have their own challenges, however. Ice can form on the cooling tower in the colder months. During transitional months when days are warm but nights are still cold, the mechanical chillers, needed during the day, often don’t start up easily when there is still cold water coming to them from the water economizer that may have operated overnight. The engineers developed a control sequence for going from one system to the other during these periods to ensure the system ran reliably.

Commissioning played a critical role in verifying the systems operated as designed. Although the water economizers added a degree of operation complexity, KJWW and the GSA determined that the water economizers would cost far less on a lifecycle basis than air economizers, which would have required larger air handling rooms throughout the building. In addition, the chases and chase space required by air economizers for intake and relief would have been impractical for the building, where floor space was at a premium. Another key energy-saving feature was the use of electric “point-of-use” water heaters instead of a central hot water system, since there is not much need for hot water in the building.

While gas is less expensive for heating water, installing small point-of-use electric heaters where the water is needed—at each sink or bathroom group—eliminated the need for central storage of hot water, distribution and recirculation piping, saving all the cost involved and eliminating “parasitic” heat loss. As for the glass curtain wall, members of the core design team traveled to Washington, DC, where the GSA’s HVAC Peer Review panel accepted the engineers’ solution that flushing air along the wall would prevent condensation. 

No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2013 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
A cool solution: Collaboration, chemistry leads to foundry coat product development; See the 2015 Product of the Year Finalists
Raising the standard: What's new with NFPA 70E; A global view of manufacturing; Maintenance data; Fit bearings properly
Sister act: Building on their father's legacy, a new generation moves Bales Metal Surface Solutions forward; Meet the 2015 Engineering Leaders Under 40
Cyber security cost-efficient for industrial control systems; Extracting full value from operational data; Managing cyber security risks
Drilling for Big Data: Managing the flow of information; Big data drilldown series: Challenge and opportunity; OT to IT: Creating a circle of improvement; Industry loses best workers, again
Pipeline vulnerabilities? Securing hydrocarbon transit; Predictive analytics hit the mainstream; Dirty pipelines decrease flow, production—pig your line; Ensuring pipeline physical and cyber security
Upgrading secondary control systems; Keeping enclosures conditioned; Diagnostics increase equipment uptime; Mechatronics simplifies machine design
Designing positive-energy buildings; Ensuring power quality; Complying with NFPA 110; Minimizing arc flash hazards
Building high availability into industrial computers; Of key metrics and myth busting; The truth about five common VFD myths

Annual Salary Survey

After almost a decade of uncertainty, the confidence of plant floor managers is soaring. Even with a number of challenges and while implementing new technologies, there is a renewed sense of optimism among plant managers about their business and their future.

The respondents to the 2014 Plant Engineering Salary Survey come from throughout the U.S. and serve a variety of industries, but they are uniform in their optimism about manufacturing. This year’s survey found 79% consider manufacturing a secure career. That’s up from 75% in 2013 and significantly higher than the 63% figure when Plant Engineering first started asking that question a decade ago.

Read more: 2014 Salary Survey: Confidence rises amid the challenges

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.