Transformerless medium-voltage drives perspective

Some drive manufacturers do not agree on the merits of medium-voltage (MV) drive operation without an input transformer. The following pro and con comments come from companies with and without a transformerless MV drive on the market.


Not all drive manufacturers agree on the merits of medium-voltage (MV) drive operation without an input transformer. (Also see: Why Choose Medium-Voltage Drives). The following pro and con comments come from companies with and without a transformerless MV drive on the market.

“Eliminating the transformer is often driven by a first-cost criterion and may not provide the best overall drive solution,” says Tim Russell, senior system engineer at TM GE Automation Systems (TMEIC GE). He sees a greater role for drive transformers beyond just providing isolation. “They also provide voltage matching to the utility, phase shifting for harmonic reduction, and impedance for fault current limitation—as elements of total product installation criteria.”

Older generation current-source inverter (CSI) drives offered this capability for some time; and several modern voltage-source inverter (VSI) drives can be provided with active component rectifiers for transformerless operation, notes TMEIC GE. (See separate online coverage of CSI- and VSI-type drive configurations.)

TMEIC GE designs and develops advanced automation, large ac machines, and variable-frequency drives based on the combined heritage of Toshiba, Mitsubishi Electric, and General Electric.

“Replacing transformers with silicon in the form of power switches in multi-level configurations reduces the drive’s overall size and weight while providing the same key benefits,” says Paul Nolden, program manager, MV drives at ABB Inc. “Movement to transformerless MV drives is helping to reduce the cost/power ratio.” Nolden emphasizes that requirements for harmonic compliance (IEEE 519) and common-mode filtering—normally provided by the transformer—must still be met when selecting a transformerless drive. The latter design typically relies on active front-end circuitry to provide those functions. ABB manufactures MV drives with traditional as well as transformerless designs.

As mentioned in the main article, transformerless MV drives still require the proper input voltage. In a number of large industrial facilities, such as aluminum or steel processing plants, a distribution transformer may exist to provide the “correct MV bus” supply, which also would feed various other plant equipment. For example, 13.8 kV distribution voltage could be stepped down to 4.16 kV. Then, any 4.16 kV drive on site could connect directly to the bus, explains Nolden.

Rockwell Automation, an enthusiastic advocate of transformerless MV drives, suggests that a similar MV bus is available at oil drilling platforms and onboard ships. The substantially more compact transformerless MV drive offers special advantages in these limited space applications.

Scott Conner—manager, large drives sales applications engineering at Siemens Industry Inc.—agrees that some of the earliest variable frequency drives (VFDs) operated without a transformer. However, he believes there are good reasons for having a transformer; for example, to mitigate common voltage disturbance by grounding via the transformer and ability to buffer the VFD’s power electronics from the line (and vice versa), which helps minimize harmonics. “Not having a transformer creates issues that must be solved with a complicated active front end (AFE) or rectifier arrangement,” says Conner. “The drive’s AFE must handle harmonics and power factor which—at some speeds and loads—are more difficult to optimize at the same time than in a MV drive with a transformer.” It then becomes a choice as to which attribute to optimize. “Also, in many cases a distribution transformer must be added to the system to achieve a practical input voltage to the VFD,” he states.

On the benefits side, transformerless MV drives offer much smaller footprint and plug-and-play features. “In some retrofit cases with limited space for a transformer, a smaller footprint can be a benefit and in this case makes sense,” adds Conner.

Siemens MV drives include the following product lines: Robicon Perfect Harmony and Sinamics GM 150 (single-motor usage), SM 150 (single- and multi-motor usage), and GL 150 (for single, synchronous motors up to 75 MW power).

Also read: Inverter topologies: Voltage- source or current-source.

And: What is medium voltage?

Why Choose Medium-Voltage Drives

Frank J. Bartos, P.E., is Control Engineering consulting editor. Reach him at

No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2013 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
A cool solution: Collaboration, chemistry leads to foundry coat product development; See the 2015 Product of the Year Finalists
Raising the standard: What's new with NFPA 70E; A global view of manufacturing; Maintenance data; Fit bearings properly
Sister act: Building on their father's legacy, a new generation moves Bales Metal Surface Solutions forward; Meet the 2015 Engineering Leaders Under 40
Cyber security cost-efficient for industrial control systems; Extracting full value from operational data; Managing cyber security risks
Drilling for Big Data: Managing the flow of information; Big data drilldown series: Challenge and opportunity; OT to IT: Creating a circle of improvement; Industry loses best workers, again
Pipeline vulnerabilities? Securing hydrocarbon transit; Predictive analytics hit the mainstream; Dirty pipelines decrease flow, production—pig your line; Ensuring pipeline physical and cyber security
Upgrading secondary control systems; Keeping enclosures conditioned; Diagnostics increase equipment uptime; Mechatronics simplifies machine design
Designing positive-energy buildings; Ensuring power quality; Complying with NFPA 110; Minimizing arc flash hazards
Building high availability into industrial computers; Of key metrics and myth busting; The truth about five common VFD myths

Annual Salary Survey

After almost a decade of uncertainty, the confidence of plant floor managers is soaring. Even with a number of challenges and while implementing new technologies, there is a renewed sense of optimism among plant managers about their business and their future.

The respondents to the 2014 Plant Engineering Salary Survey come from throughout the U.S. and serve a variety of industries, but they are uniform in their optimism about manufacturing. This year’s survey found 79% consider manufacturing a secure career. That’s up from 75% in 2013 and significantly higher than the 63% figure when Plant Engineering first started asking that question a decade ago.

Read more: 2014 Salary Survey: Confidence rises amid the challenges

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.