Tips and Tricks: How to ruggedize an embedded control system

10 tips for making rugged control systems include knowing the end user of the product, how the product will be used, and operating conditions. Which are the most important attributes, and which one requires the most careful consideration?

07/20/2011


Morey provides electronic manufacturing services, and, among products, offers ruggedized controllers with many options. Photo courtesy: Morey Corp.Important tips for ruggedizing embedded control systems include knowing the end user of the product, how the product will be used, and operating conditions. Below the list, learn which attributes are most important and which one requires the most critical consideration.

  1. Who is the end user of the product?
  2. How will the product be used?
  3. What are (or will be) the conditions that the product will be exposed to?
  4. Where will the product be placed or located?
  5. What types of physical connections will be required?
  6. What materials should be considered in the design of the product?
  7. How will it be secured or attached?
  8. What level of testing and what specific tests will be required?
  9. When will the product be first installed?
  10. How and how often will it need to be accessed?

When ruggedizing an embedded system for use in automation, controls, or instrumentation, which of the attributes above are most important and why?

How the product will be used and the conditions to which the product will be exposed are the key elements when ruggedizing a design. The first part (usage) defines the parameters of expectation; the designer should insist on understanding how the end customer will be expected to use the product. Although the product itself may not require human interaction on a regular basis, it will require human manipulation during its lifetime. That manipulation will take many forms:

  • Manufacturability: Someone has to be able to build it.
  • Installation: Someone has to be able to install, mount, and connect to it. For large volumes this may have to be repeated many times in a day.
  • Usage: One way or another and at some point someone will have to interface with the product.
  • Serviceability: The device will need to be serviced; access to it while maintaining integrity of the design (at times in the field) will need careful consideration.

The second part (exposure) indicates the practical side of design. If the customer’s specification calls for a design that is water resistant, but the end user plans to attach the product to the bottom of a boat, then that, and not the specification, should be the primary consideration. In such cases it will be up to the designer to push back and have the specifications changed to meet the expected performance. Many good designs have failed in the field by adhering strictly to the customer’s requirements without challenge.

Tip number 8, involving “specific tests,” isn’t among the “most important” for various reasons, primarily because blindly requesting specific tests (or blanket tests) without knowing the aforementioned items is pointless. It will add unnecessary costs and potential bulk to the product.  Invariably it will miss the mark with the end customer by being too expensive or too big.

Also, test specifications are at times used as a “cover all bases” method.  It can be a wonderful thing to follow but also can be a dangerous road when taken as gospel without deep understanding of its intended application. Often customers will ask for a specific test standard to be followed “to the letter, and in its entirety.” Just because there is a test for the survivability of a product if it is thrown out of an airplane at 35,000 ft, doesn’t mean you have to design the product to adhere to it. The best design rule is to observe how a product will be used and push like mad to have the customer understand it.

- Emad Isaac, CTO for Morey Corp., provider of electronic manufacturing services.

www.moreycorp.com



No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2013 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
The true cost of lubrication: Three keys to consider when evaluating oils; Plant Engineering Lubrication Guide; 11 ways to protect bearing assets; Is lubrication part of your KPIs?
Contract maintenance: 5 ways to keep things humming while keeping an eye on costs; Pneumatic systems; Energy monitoring; The sixth 'S' is safety
Transport your data: Supply chain information critical to operational excellence; High-voltage faults; Portable cooling; Safety automation isn't automatic
Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Plant Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.

Maintaining low data center PUE; Using eco mode in UPS systems; Commissioning electrical and power systems; Exploring dc power distribution alternatives
Synchronizing industrial Ethernet networks; Selecting protocol conversion gateways; Integrating HMIs with PLCs and PACs
Why manufacturers need to see energy in a different light: Current approaches to energy management yield quick savings, but leave plant managers searching for ways of improving on those early gains.

Annual Salary Survey

Participate in the 2013 Salary Survey

In a year when manufacturing continued to lead the economic rebound, it makes sense that plant manager bonuses rebounded. Plant Engineering’s annual Salary Survey shows both wages and bonuses rose in 2012 after a retreat the year before.

Average salary across all job titles for plant floor management rose 3.5% to $95,446, and bonus compensation jumped to $15,162, a 4.2% increase from the 2010 level and double the 2011 total, which showed a sharp drop in bonus.

2012 Salary Survey Analysis

2012 Salary Survey Results

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.