The Industrial Internet of Things

05/15/2013


The technology solutions we create must be easy, flexible, and powerful

Rick Bullotta

Any consideration of applying the concepts from the IoT to the industrial space would be incomplete without addressing the following:

  • Legacy systems and devices—How will they participate in this new architecture, at all levels of the stack? While IPv6 and 6LoWPAN are important moving forward, we need to embrace existing devices and endpoints as well.
  • The IoT and I2oT are not a communications/plumbing problem (or opportunity); they are about creation of useful applications. While standardizing some of the lower level networking is helpful, it will fall far short of truly unlocking the potential and represents only a tiny piece of the requirements. Other critical elements include:

1. A semantic model for discovering, addressing, and consuming the data, services, and events that the elements of the IoT/I2oT will provide. Although the “I” in the IoT stands for Internet, the reality is that the Internet wasn’t necessarily the source of the amazing innovations we’ve seen that have changed our lives. It was in many cases the WWW and related standards and protocols that ran on top of the Internet. The same will be true of the IoT.

2. Highly granular security models that can protect access to very specific device capabilities. This way, we can allow selective sharing and access control, better deal with cyber security implications, and so on.

3. Quality of service (QoS) and security at the network layer. Not all messages and bits that are passed on the IoT and I2oT are of equal importance, and this needs to be designed into the stack. IPV6 offers some capabilities in these areas, but more is required.

Let’s not forget the human side of the discussion. People still represent the sensors, actuators, and knowledge base for a huge amount of industrial processes. Failure to consider how humans will interact in the I2oT will lead to failure!

Despite some vendors’ claims to the contrary, the IoT and I2oT are not simply cloud device architectures. In fact, to be successful, secure, reliable, and capable of performing as required, we need to consider them as a distributed systems architecture. Those of us who come from the industrial automation world have been dealing with these types of problems for decades, and there is much to be learned from past experiences and applied to the IoT and the I2oT. Standards are important, but we need to consider carefully where in the stack to focus our energies first on standardization. For example:

  • Which areas have the most immediate impact/value?
  • How can we address the issue of legacy integration?
  • How can we “future proof” our standardization efforts so that when IPv24 and infinitely fast, zero gravity, powerless wireless communications are available, we aren’t starting from scratch?
  • Consider not only the use cases of the past, but the use cases of the future.

Moreover, how can we embrace some other key elements of the IoT in the I2oT?

  • Location awareness of assets, people, and even data. Data has time, value, quality, and location.
  • Contextualization of data via metatagging and other mechanisms, such as a move from dumb historians to smart historians,
  • Mobile devices and new modalities for interaction, including push-based notifications, search-based access to information, secure connections from anywhere, and so on, and,
  • Extend the concept of the social graph to the equipment, processes, systems, and people in the work environment.

We at ThingWorx are using our extensive experience in the industrial sector (the founders of ThingWorx brought experience from Wonderware, Lighthammer, and Cimnet) to apply those lessons and know-how to the IoT and the I2oT. We share the view that there is huge value to be unlocked. We also passionately believe that the value will be unlocked when we provide technology solutions that are easy, flexible, and powerful. Those elements need not be mutually exclusive. And security and reliability are a given. We also feel strongly that there is much to be gained from sharing experiences and technology in both directions—applying the lessons learned from the open, mobile collaborative, and composable world of the IoT to the industrial space, and leveraging decades of knowledge and experience in delivering reliable, performance driven, distributed systems that exist in the industrial sector.

Rick Bullotta is CTO and co-founder of ThingWorx. 



The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
A new approach to the Skills Gap; Community colleges may hold the key for manufacturing; 2017 Engineering Leaders Under 40
Doubling down on digital manufacturing; Data driving predictive maintenance; Electric motors and generators; Rewarding operational improvement
2017 Lubrication Guide; Software tools; Microgrids and energy strategies; Use robots effectively
The cloud, mobility, and remote operations; SCADA and contextual mobility; Custom UPS empowering a secure pipeline
Infrastructure for natural gas expansion; Artificial lift methods; Disruptive technology and fugitive gas emissions
Mobility as the means to offshore innovation; Preventing another Deepwater Horizon; ROVs as subsea robots; SCADA and the radio spectrum
Power system design for high-performance buildings; mitigating arc flash hazards
Research team developing Tesla coil designs; Implementing wireless process sensing
Commissioning electrical systems; Designing emergency and standby generator systems; Paralleling switchgear generator systems

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
The maintenance journey has been a long, slow trek for most manufacturers and has gone from preventive maintenance to predictive maintenance.
Featured articles highlight technologies that enable the Industrial Internet of Things, IIoT-related products and strategies to get data more easily to the user.
This digital report will explore several aspects of how IIoT will transform manufacturing in the coming years.
Maintenance Manager; California Oils Corp.
Associate, Electrical Engineering; Wood Harbinger
Control Systems Engineer; Robert Bosch Corp.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me