The early 2000s: The amazing boom of data center construction

Data center engineers have split into two camps. Which camp are you in?


Prior to 2000, almost any data center in the world that had 10 mVA of total load would have been considered a very large data center. Mostly due to the growth of the Internet and cloud computing over the next 10 years, data center total loads grew from 10 to 20 to 40 to 60 to 80 mVA, and some data centers are being planned now that will have more than 100 mVA of total aggregate load.


This dramatic growth presents great challenges for design engineers to move that much infrastructure power into a data center economically, efficiently, and safely.


The loads have grown so much and so fast that many utilities can no longer serve these loads with their present medium-voltage distribution systems, and more than a few owners are now having to take utility service at transmission-level voltage, and construct their own primary substations. The loads are now often so large that it has become impractical in many cases to use even 15 kV class distribution systems–a distribution voltage of 15 kV is just too low, in many cases. Feeder cable sizing and breaker ampacity ratings often become too large at 15 kV, and short-circuit duties can become excessive for downstream equipment. Sometimes, the only good reason to continue to “force” distribution into an ever-shrinking 15 kV “box” is to avoid another transformation for diesel generators, so that utility-generator transfer operations can be made directly at the 15 kV level.


As this trend has developed, it appears to me that the consulting engineering community has more or less split into two camps:

  • One camp prefers to stay with highly reliable liquid utility transformations, located outdoors, and then run large underground duct banks into secondary switchgear located inside the building.
  • The other camp remembered the lessons learned from the “World War II loadcenter” concept, and moved their transformations inside the building, physically closer to the actual loads.



Here’s an at-a-glance economic comparison between the two different approaches: 


Comparison of copper used with  


Figure #3 – Comparison of Approaches


The example shown is not very typical, because in the 480 V example, most engineers would do all possible to place the transformers as close as possible to the secondary switchgear, in order to minimize the lengths of the 480 V conductors. But, the example is nonetheless real-life, and I’ve seen this very arrangement in a few projects.

No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
Safety for 18 years, warehouse maintenance tips, Ethernet and the IIoT, GAMS 2016 recap
2016 Engineering Leaders Under 40; Future vision: Where is manufacturing headed?; Electrical distribution, redefined
Strategic outsourcing delivers efficiency; Sleeve bearing clearance; Causes of water hammer; Improve air quality; Maintenance safety; GAMS preview
SCADA at the junction, Managing risk through maintenance, Moving at the speed of data
Safety at every angle, Big Data's impact on operations, bridging the skills gap
The digital oilfield: Utilizing Big Data can yield big savings; Virtualization a real solution; Tracking SIS performance
Applying network redundancy; Overcoming loop tuning challenges; PID control and networks
Driving motor efficiency; Preventing arc flash in mission critical facilities; Integrating alternative power and existing electrical systems
Package boilers; Natural gas infrared heating; Thermal treasure; Standby generation; Natural gas supports green efforts

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
This article collection contains several articles on the vital role of plant safety and offers advice on best practices.
This article collection contains several articles on the Industrial Internet of Things (IIoT) and how it is transforming manufacturing.
This article collection contains several articles on strategic maintenance and understanding all the parts of your plant.
click me