Steam Quality – Plant Operations Require High Steam Quality

What is steam quality? Why is steam quality important? What are the effects of steam quality? How is steam quality measured?

05/11/2011


What Is Steam Quality?

Steam quality is the proportion of saturated steam (vapor) in a saturated condensate (liquid)/steam (vapor) mixture. A steam quality of 0 indicates 100% liquid (condensate), while a steam quality of 100 indicates 100% steam. One (1) lb of steam with 95% steam and 5% percent of liquid entrainment has a steam quality of 0.95.

The measurements needed to obtain a steam quality measurement are temperature, pressure, and entrained liquid content. A high percentage (88% or more) of industrial steam systems use saturated steam for process applications. Saturated steam (meaning steam that is saturated with energy) is completely gaseous and contains no liquid.

The boiler operation uses chemical energy from a fuel source to deliver energy to the boiler water. Inside the boiler, liquid gains energy from the combustion process and changes state into saturated steam. Water enters the boiler at point A and the water gains sensible energy (hf) to point B. The change of state is referenced as point B on the chart. As the saturated steam acquires more energy from the boiler combustion process, the steam achieves a high quality, as represented on the chart by moving left to right, from points B to C. The increase in energy gained by the steam from points C to D goes toward the superheat of the vapor.

There exists a directly proportional relationship between temperature and pressure in saturated steam. That is, as the temperature increases, so does the pressure. Illustrated by the “lines of constant pressure” on the graph, more sensible energy (hf) is needed for water to transition from point A to point B and become a vapor. When steam enters the process, the energy level goes from right to left as the process absorbs the energy from the steam.

Why Steam Quality Is Important

Today’s manufacturing techniques of heat transfer, control, and standards are all dedicated to improving and providing the highest quality product to the market place. To attain the highest quality, each manufactured component of the final product is inspected repeatedly, and measured for its quality to ensure that it meets the manufacturer’s and consumer’s expectations.

Steam is a vital and critical part in producing the final product; therefore, steam quality should be one of the main measurable points in producing a product in today’s manufacturing facility. All heat transfer components (shell/tube, plate/frame, plate/coil, tracing, etc.) base performance calculations on 100% steam quality, unless the manufacturer is informed by the end user that the steam quality is lower than 100%.

Unfortunately, steam quality is typically not monitored closely and is assumed to be 100% quality. Therefore, issues that arise from poor steam quality are blamed on some other item in the system. Based on field documentation by Swagelok Energy Advisors Inc., a high percentage of steam systems are operating below acceptable steam quality levels.

What Are the Effects of Steam Quality?

Low steam quality affects steam system operations in many ways.

  1. Reduced heat transfer efficiency:
    • The major problem with low steam quality is the effect on the heat transfer equipment and process. In some cases, low steam quality can reduce heat transfer efficiency by more than 65%. The liquid entrained in the steam has sensible energy (16% estimated – varies with pressure) which has a significantly lower amount of energy than the steam vapor’s latent energy (94%). Therefore, less usable energy is being delivered to the steam process equipment. Also, the additional liquid (low steam quality) collects on the wetted surface of the heat exchanger, causing an additional build up of a liquid, which reduces the ability of the steam’s latent energy to be transfer to the product.
  2. Premature valve failure:
    • Liquid passing through steam control valves will erode the internals of the valves, causing premature failure.
  3. Internal turbine component failures:
    • Liquid introduced with the steam in a saturated turbine operation will reduce the life expectancy of the internal components.
  4. Waterhammer:
    • Steam systems are usually not designed to accommodate the additional liquid in steam. Additional liquid creates the chance for waterhammer to occur. Waterhammer is a safety issue, and may cause premature failure in the steam system.

How Is Steam Quality Measured?

A true measurement of steam quality can be obtained from the use of a throttling calorimeter and Ganapathy’s steam plant calculations. Unfortunately, most industrial plants do not have the luxury or capability of doing the testing. Another way to measure steam quality is relying on the basics of steam. Saturated steam is a dry invisible gas and only becomes visible with the entrained air or liquid. Therefore, opening a steam valve and allowing steam to be released into the atmosphere provides an estimate of the steam quality in the system.

Examples:

Picture number 1 indicates an acceptable steam quality. The discharge from the valve through the tube is almost invisible.

Picture number 2 shows the discharge from the valve off the steam line to be very visible with liquid being discharged with the steam vapor. Steam quality is not acceptable for the process.

Picture number 3 shows the discharge from the valve off the

steam line to be very visible with liquid being discharged with the steam vapor. Steam quality is not acceptable for the process.

Roadmap to Ensure a High Steam Quality

The following items will ensure a high steam quality:

  1. Insulate steam lines and components
  2. Establish proper steam line drip leg steam trap stations
  3. Develop proper startup procedures
  4. Implement a proactive boiler chemical program
  5. Implement a proactive steam system management program
  6. Install steam separators (mechanical coalescing design), if needed

For more information, visit www.swagelokenergy.com.


The above material is part of Swagelok Energy Advisor’s series of Best Practice papers, authored by Kelly Paffel. Kelly is a recognized authority in steam and condensate systems. He is a frequent lecturer and instructor on the technical aspects of steam systems. In addition, Kelly has published many papers on the topics of steam system design and operation. Over the past 30 years, he has conducted thousands of steam system audits and training sessions in the United States and overseas, which has made Kelly an expert in trouble-shooting actual and potential problems in the utilities of steam. Kelly is a member of the U.S. Department of Energy’s (DOE) Steam Best Practices and Steam Training Committees.



No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2013 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Leaders Under 40 program features outstanding young people who are making a difference in manufacturing. View the 2013 Leaders here.
The new control room: It's got all the bells and whistles - and alarms, too; Remote maintenance; Specifying VFDs
2014 forecast issue: To serve and to manufacture - Veterans will bring skill and discipline to the plant floor if we can find a way to get them there.
2013 Top Plant: Lincoln Electric Company, Cleveland, Ohio
Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Plant Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.

Why manufacturers need to see energy in a different light: Current approaches to energy management yield quick savings, but leave plant managers searching for ways of improving on those early gains.
Electric motor power measurement and analysis: Understand the basics to drive greater efficiency; Selecting the right control chart; Linear position sensors gain acceptance
Protecting standby generators for mission critical facilities; Selecting energy-efficient transformers; Integrating power monitoring systems; Mitigating harmonics in electrical systems

Annual Salary Survey

Participate in the 2013 Salary Survey

In a year when manufacturing continued to lead the economic rebound, it makes sense that plant manager bonuses rebounded. Plant Engineering’s annual Salary Survey shows both wages and bonuses rose in 2012 after a retreat the year before.

Average salary across all job titles for plant floor management rose 3.5% to $95,446, and bonus compensation jumped to $15,162, a 4.2% increase from the 2010 level and double the 2011 total, which showed a sharp drop in bonus.

2012 Salary Survey Analysis

2012 Salary Survey Results

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.