SR motor anatomy: See inside switched reluctance motors

Simple electromechanical structure of switched reluctance (SR) motors offers benefits of robustness and reliability by eliminating permanent magnets, rotor bars, and more - tutorial.

03/09/2010


Control Engineering feature article: Resurgence for SR Motors, Drives? Advances in controls and simulation software help switched reluctance (SR) motors--one of the oldest electric motor types--remain competitive.

 

Simplest possible 1-phase SR motor (a) illustrates the switched reluctance principle. In the more practical 3-phase motor (b), energizing stator phase pair B (for position shown) produces clockwise torque; energizing phase pair C produces conter-clockwise torque. Design variations include more motor phase, stator poles, and rotor poles.

Simplest possible 1-phase SR motor (a) illustrates the switched reluctance principle. In the more practical 3-phase motor (b), energizing stator phase pair B (for position shown) produces clockwise torque; energizing phase pair C produces conter-clockwise torque. Design variations include more motor phase, stator poles, and rotor poles.

 

Simple electromechanical structure of switched reluctance (SR) motors offers benefits of robustness and reliability by eliminating permanent magnets, rotor bars, and more.

Origins of switched reluctance (SR) motors can be traced back to the reluctance machine design of the mid-19th century, making them one of the oldest electric motor types around. The term SR has been in use for about 40 years, where "switched" indicates sequential switching of current among stator phase windings of the motor--necessary to develop a rotating magnetic field (see main article)--and "reluctance" refers to the resistive property of the magnetic circuit.

Simple rotor, stator construction

Rotor structure of an SR motor is very simple, comprising a stack of electrical steel laminations mounted on the motor shaft. The rotor has no windings or rotor bars, no permanent magnets, and no electrical contacts.

Absence of rotor conductors eliminates a heat source, increasing bearing and lubricant life. Lower power losses improve energy efficiency. The low SR rotor losses are especially relevant during starting, when they are actually less than at normal full-load running condition, according to Emerson Motor Co. This permits prolonged operation in the stalled condition, and repeated starting under full load; starting current never exceeds full-load operating current. "Such performance is often not possible with conventional drives because of large rotor electrical losses, and subsequent rotor heating under such conditions," says Rob Boteler, director of marketing at Emerson Motor.

The "salient" pole construction-with gaps between poles rather than a solid circular cross-section-creates a relatively low-inertia rotor which allows for rapid dynamic response and minimizes risk of mechanical damage from shock loads in high-ratio, gear-driven applications, Boteler explains. "Because of its uniquely simple construction, the SR rotor is well suited to operation at high speeds. It can tolerate high levels of vibration and thermal cycling." Absence of permanent magnets brings significant benefits in terms of environmental compatibility, and permits repair of SR motors in the field or in a conventional repair shop.

An SR motor's stator is likewise a simple, robust structure. It consists of singly pitched coils placed over the salient stator poles (see diagram in main article); the coils are easily pre-wound on a bobbin. "Overall [heating] losses in an SR motor are concentrated within the stator and are relatively easily dissipated--in case of a standard totally enclosed machine by conduction to the relatively cool exterior of the motor frame," states Boteler.

Moreover, stator windings--unlike those of an induction motor--are not distributed over many slots, and the phases do not cross each other in the slot or in the end-connections. This reduces insulation stresses and largely eliminates risk of phase-to-phase insulation failure. Simplicity of the coils allows the end windings to be much shorter than those typically found in ac motors. "As a result, energy losses associated with end windings are reduced. This further improves efficiency and permits the design of different SR motor configurations--for example, flat-shaped ("pancake") motors," Boteler adds. www.emerson.com

[Note, this section of the article is adopted from a paper, "Switched Reluctance Compressor Drive," presented by Emerson Motor Co. at EEMODS 2009 (Efficient Electric Motor Drive Systems), Nantes, France, Sept. 2009.]

Fault tolerance

An additional feature unique to SR motors is the ability to continue to operate (and also likely to start) under a phase loss condition. However, the motor would run less smooth and with less torque output. In theory, only one pole pair is required for operation. "This contrasts with ac induction machines, which will fail to operate when you lose a phase," says George Holling, technical director at Rocky Mountain Technologies.

This feature is of particular advantage in applications such as defense, aerospace, and medical, where ability to complete a mission and/or return safely overrides reduced torque output and noise generation. Holling mentions that a 4-phase SR motor can typically maintain 80% of normal starting torque with one phase inoperative. www.rockymountaintechnologies.com

One recent paper that addresses the issue of fault tolerance in SR systems should be of interest to automation professionals. It can be found at
www.scribd.com/doc/24541914/3rd-International-Symposium-on-Electrical-Engineering-and-Energy-Converters

Also, SPEED software, a motor design tool (developed at Univ. of Glasgow, U.K., as a valuable design tool for building SR motors) is available in the U.S. (and the Americas) through the distributor Magsoft Corp. (SPEED stands for Scottish Power Electronics and Electric Drives; it's a consortium.) www.magsoft-flux.com

Also read, from Control Engineering :

- Springtime for Switched Reluctance Motors? (Feb. 2003) ;

- 'Forward to the Past' with SR Technology (Nov. 1999) ; and

- Motors & Drives channel .

- Frank J. Bartos, P.E, Control Engineering Consulting Editor, braunbart@sbcglobal.net. www.controleng.com



No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
2016 Product of the Year; Diagnose bearing failures; Asset performance management; Testing dust collector performance measures
Safety for 18 years, warehouse maintenance tips, Ethernet and the IIoT, GAMS 2016 recap
2016 Engineering Leaders Under 40; Future vision: Where is manufacturing headed?; Electrical distribution, redefined
SCADA at the junction, Managing risk through maintenance, Moving at the speed of data
Safety at every angle, Big Data's impact on operations, bridging the skills gap
The digital oilfield: Utilizing Big Data can yield big savings; Virtualization a real solution; Tracking SIS performance
Applying network redundancy; Overcoming loop tuning challenges; PID control and networks
Driving motor efficiency; Preventing arc flash in mission critical facilities; Integrating alternative power and existing electrical systems
Package boilers; Natural gas infrared heating; Thermal treasure; Standby generation; Natural gas supports green efforts

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
This article collection contains several articles on the vital role of plant safety and offers advice on best practices.
This article collection contains several articles on the Industrial Internet of Things (IIoT) and how it is transforming manufacturing.
This article collection contains several articles on strategic maintenance and understanding all the parts of your plant.
click me