Soft starter designs, functions

High inrush currents and mechanical wear and tear are two principal causes of motor damage. Drives can protect attached mechanical components from wear and tear by slowly starting and stopping the drive train. When a variable speed drive isn’t an option, a soft starter can ease the initial impact of the motor starting and soften the blow when it shuts off. Back to Basics, June 2008


High inrush currents and mechanical wear and tear are two principal causes of motor damage. Drives can protect attached mechanical components from wear and tear by slowly starting and stopping the drive train. When a variable speed drive isn’t an option, a soft starter can ease the initial impact of the motor starting and soften the blow when it shuts off.


Soft starters are especially useful for conveyors, fans, pumps, and any equipment where starting or stopping at full speed applies too much stress or could damage the product being moved by the machine. Other motor-driven applications where soft starters can provide benefit include escalators and moving walkways in jurisdictions where such devices can automatically stop and start as needed to save energy.


How do soft starters work?

Instead of applying the full voltage available to start the motor when powered on, a soft starter ramps up the voltage according to the application.


Douglas Yates, product manager, MCG Products, North America Motion Controls, Danfoss Inc., says that while a variable speed drive, as the name suggests, changes motor speed, a soft starter cannot. Inside, he says, a pattern of solid-state switches—called silicon-controlled rectifiers (SCRs) or thyristors—open in different intervals for voltage to ramp up to full speed.


SCR-diode and SCR-SCR designs are available for three-phase motor applications. SCR-diode requires higher start current, causes more heat, and generates undesirable harmonics, Yates says; SCR-SCR provides full wave control.


Motion Control, Power Controls

Current feedback loops hellp protect the motor and provide other current-based functions.

Designs, by phase, open, closed


Designs vary further by phase and whether they open or close the control loop, Yates explains:


  • Single-phase units control start torque, but do not reduce start current. Therefore, they are inadequate for applications with frequent cycling or high inertia loads;

  • Two-phase units do not isolate all phases from the motor. This type of control requires a thermal relay or circuit breaker to protect the motor;

  • Three-phase units provide full control of all three phases, giving maximum control of current and torque;

  • Open-loop designs offer no current feedback loop. They control starting with a preselected voltage profile, and do not provide motor protection; and

  • Closed-loop designs (diagram) provide motor protection and other current functions, and allow the user to set a maximum start current level.

Features, advances

Recent soft starter advances include:


  • Smaller (solid-state) electronics or silicon-controlled rectifiers have allowed for smaller dimensions, making use easier for machine and panel builders;

  • Wide variety of currents and voltages are available (with wider voltage ranges available in specific models);

  • Better sensors for protection and diagnostics help eliminate nuisance trips;

  • Presets appropriate to various applications’ starting curves or torque ramping needs;

  • Options for closed loop control or operator indication are available, with signal relays included with some models;

  • Easier settings with knobs (no programming required);

  • Wider communications availability;

  • More mounting, enclosure, and high voltage safety interlock options; and

  • Multiple certifications and approvals.



Author Information

Mark T. Hoske is editor in chief, Control Engineering. Reach him at .


No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2013 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
The true cost of lubrication: Three keys to consider when evaluating oils; Plant Engineering Lubrication Guide; 11 ways to protect bearing assets; Is lubrication part of your KPIs?
Contract maintenance: 5 ways to keep things humming while keeping an eye on costs; Pneumatic systems; Energy monitoring; The sixth 'S' is safety
Transport your data: Supply chain information critical to operational excellence; High-voltage faults; Portable cooling; Safety automation isn't automatic
Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Plant Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.

Maintaining low data center PUE; Using eco mode in UPS systems; Commissioning electrical and power systems; Exploring dc power distribution alternatives
Synchronizing industrial Ethernet networks; Selecting protocol conversion gateways; Integrating HMIs with PLCs and PACs
Why manufacturers need to see energy in a different light: Current approaches to energy management yield quick savings, but leave plant managers searching for ways of improving on those early gains.

Annual Salary Survey

Participate in the 2013 Salary Survey

In a year when manufacturing continued to lead the economic rebound, it makes sense that plant manager bonuses rebounded. Plant Engineering’s annual Salary Survey shows both wages and bonuses rose in 2012 after a retreat the year before.

Average salary across all job titles for plant floor management rose 3.5% to $95,446, and bonus compensation jumped to $15,162, a 4.2% increase from the 2010 level and double the 2011 total, which showed a sharp drop in bonus.

2012 Salary Survey Analysis

2012 Salary Survey Results

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.