Soft starter designs, functions

High inrush currents and mechanical wear and tear are two principal causes of motor damage. Drives can protect attached mechanical components from wear and tear by slowly starting and stopping the drive train. When a variable speed drive isn’t an option, a soft starter can ease the initial impact of the motor starting and soften the blow when it shuts off. Back to Basics, June 2008


High inrush currents and mechanical wear and tear are two principal causes of motor damage. Drives can protect attached mechanical components from wear and tear by slowly starting and stopping the drive train. When a variable speed drive isn’t an option, a soft starter can ease the initial impact of the motor starting and soften the blow when it shuts off.


Soft starters are especially useful for conveyors, fans, pumps, and any equipment where starting or stopping at full speed applies too much stress or could damage the product being moved by the machine. Other motor-driven applications where soft starters can provide benefit include escalators and moving walkways in jurisdictions where such devices can automatically stop and start as needed to save energy.


How do soft starters work?

Instead of applying the full voltage available to start the motor when powered on, a soft starter ramps up the voltage according to the application.


Douglas Yates, product manager, MCG Products, North America Motion Controls, Danfoss Inc., says that while a variable speed drive, as the name suggests, changes motor speed, a soft starter cannot. Inside, he says, a pattern of solid-state switches—called silicon-controlled rectifiers (SCRs) or thyristors—open in different intervals for voltage to ramp up to full speed.


SCR-diode and SCR-SCR designs are available for three-phase motor applications. SCR-diode requires higher start current, causes more heat, and generates undesirable harmonics, Yates says; SCR-SCR provides full wave control.


Motion Control, Power Controls

Current feedback loops hellp protect the motor and provide other current-based functions.

Designs, by phase, open, closed


Designs vary further by phase and whether they open or close the control loop, Yates explains:


  • Single-phase units control start torque, but do not reduce start current. Therefore, they are inadequate for applications with frequent cycling or high inertia loads;

  • Two-phase units do not isolate all phases from the motor. This type of control requires a thermal relay or circuit breaker to protect the motor;

  • Three-phase units provide full control of all three phases, giving maximum control of current and torque;

  • Open-loop designs offer no current feedback loop. They control starting with a preselected voltage profile, and do not provide motor protection; and

  • Closed-loop designs (diagram) provide motor protection and other current functions, and allow the user to set a maximum start current level.

Features, advances

Recent soft starter advances include:


  • Smaller (solid-state) electronics or silicon-controlled rectifiers have allowed for smaller dimensions, making use easier for machine and panel builders;

  • Wide variety of currents and voltages are available (with wider voltage ranges available in specific models);

  • Better sensors for protection and diagnostics help eliminate nuisance trips;

  • Presets appropriate to various applications’ starting curves or torque ramping needs;

  • Options for closed loop control or operator indication are available, with signal relays included with some models;

  • Easier settings with knobs (no programming required);

  • Wider communications availability;

  • More mounting, enclosure, and high voltage safety interlock options; and

  • Multiple certifications and approvals.



Author Information

Mark T. Hoske is editor in chief, Control Engineering. Reach him at .


No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
Safety for 18 years, warehouse maintenance tips, Ethernet and the IIoT, GAMS 2016 recap
2016 Engineering Leaders Under 40; Future vision: Where is manufacturing headed?; Electrical distribution, redefined
Strategic outsourcing delivers efficiency; Sleeve bearing clearance; Causes of water hammer; Improve air quality; Maintenance safety; GAMS preview
SCADA at the junction, Managing risk through maintenance, Moving at the speed of data
Safety at every angle, Big Data's impact on operations, bridging the skills gap
The digital oilfield: Utilizing Big Data can yield big savings; Virtualization a real solution; Tracking SIS performance
Applying network redundancy; Overcoming loop tuning challenges; PID control and networks
Driving motor efficiency; Preventing arc flash in mission critical facilities; Integrating alternative power and existing electrical systems
Package boilers; Natural gas infrared heating; Thermal treasure; Standby generation; Natural gas supports green efforts

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
This article collection contains several articles on the vital role of plant safety and offers advice on best practices.
This article collection contains several articles on the Industrial Internet of Things (IIoT) and how it is transforming manufacturing.
This article collection contains several articles on strategic maintenance and understanding all the parts of your plant.
click me