SmartBird unravels the mystery of bird flight

Festo was driven to decipher the details of bird flight, utilizing technology to create an efficient mirror of nature.

04/05/2011


One Festo Smartbirdof the oldest dreams of mankind is to fly like a bird – to move freely through the air in all dimensions and to take a “bird's-eye view” of the world from a distance. No less fascinating is bird flight in itself. Birds achieve lift and remain airborne using only the muscle power of their wings, with which they generate the necessary thrust to overcome the air resistance and set their bodies in motion – without any rotating “components”. Nature has ingeniously achieved the functional integration of lift and propulsion. Birds measure, control and regulate their motion through the air continuously and fully autonomously in order merely to survive. For this purpose they use their sense organs.

The flight of birds was long shrouded in mystery. Many scientists failed in their attempts to understand how birds fly, and this secret continued to remain unsolved. The research team from the family enterprise Festo has succeeded in unraveling the mystery of bird flight. The key to its understanding is a unique movement that distinguishes SmartBird from all previous mechanical flapping wing constructions and allows the ultra-lightweight, powerful flight model to take off, fly and land autonomously.

SmartBird flies, glides and sails through the air just like its natural model – the herring gull – with no additional drive mechanism. Its wings not only beat up and down, but also twist at specific angles. This is made possible by an active articulated torsional drive unit, which in combination with a complex control system makes for unprecedented efficiency in flight operation. Festo has thus succeeded for the first time in attaining an energy-efficient technical adaptation of this model from nature.

In developing the model, the engineers were able to draw on their wealth of experience and innovations. The experience gained with the Bionic Learning projects AirRay and AirPenguin was incorporated into the creation of SmartBird. The fascination of building an artificial bird that could take off, fly and land by means of flapping wings alone provided the inspiration for the development team: as a global player in pneumatics, Festo's mastery of airflow is unparalleled. In the development and production of the latest generations of cylinders and valves, the objective is to make optimal, efficient use of airflow for automation technology.

An unusual feature of SmartBird is the active torsion of its wings and the fact Festo Smartbirdthat it dispenses with the use of additional lift devices. The aim of the SmartBird project was to achieve an overall structure that is efficient in terms of resource and energy consumption, with minimal overall weight, in conjunction with functional integration of propulsion and lift in the wings and a flight control unit in the torso and tail regions. Further requirements were excellent aerodynamics, high power density for propulsion, and maximum agility for the flying craft. The outcome is an intelligent biomechatronic overall system.

In practice, this system operates above all in an energy-efficient manner: the propulsion and lift, as intended, are achieved solely by the flapping of the wings and have a power requirement of only around 23 watts. SmartBird has a total weight of around 450 grams and a wingspan of two metres. Measurements have demonstrated an electromechanical efficiency factor of around 45 % and an aerodynamic efficiency factor of up to 80 %. SmartBird is thus an excellent example of functional integration and resource-efficient extreme lightweight design, and demonstrates optimal use of airflow phenomena. It will provide important impulses for the further optimization of future generations of cylinders and valves.

The onboard electronics ensure precise wing control. In addition, the torsion control parameters can be adjusted and thus optimized in real time during flight. The wing flapping and twisting sequence is controlled to within only a few milliseconds and results in optimum airflow around the wings. The SmartBird flight model has no rotating parts on its exterior and therefore cannot cause injury. It is further pursuing an approach that already played an important role in the development of the Bionic Handling Assistant: human-machine interaction. This feature of both the Bionic Handling Assistant and SmartBird poses no risk to the human operator. SmartBird thus joins the list of Festo's future-oriented technologies that are expected to find practical application. Possible uses range from stroke wing generators in the energy sector up to actuators for process automation.

- Edited by Gust Gianos, Control Engineering, www.controleng.com



No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2013 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
The true cost of lubrication: Three keys to consider when evaluating oils; Plant Engineering Lubrication Guide; 11 ways to protect bearing assets; Is lubrication part of your KPIs?
Contract maintenance: 5 ways to keep things humming while keeping an eye on costs; Pneumatic systems; Energy monitoring; The sixth 'S' is safety
Transport your data: Supply chain information critical to operational excellence; High-voltage faults; Portable cooling; Safety automation isn't automatic
Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Plant Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.

Maintaining low data center PUE; Using eco mode in UPS systems; Commissioning electrical and power systems; Exploring dc power distribution alternatives
Synchronizing industrial Ethernet networks; Selecting protocol conversion gateways; Integrating HMIs with PLCs and PACs
Why manufacturers need to see energy in a different light: Current approaches to energy management yield quick savings, but leave plant managers searching for ways of improving on those early gains.

Annual Salary Survey

Participate in the 2013 Salary Survey

In a year when manufacturing continued to lead the economic rebound, it makes sense that plant manager bonuses rebounded. Plant Engineering’s annual Salary Survey shows both wages and bonuses rose in 2012 after a retreat the year before.

Average salary across all job titles for plant floor management rose 3.5% to $95,446, and bonus compensation jumped to $15,162, a 4.2% increase from the 2010 level and double the 2011 total, which showed a sharp drop in bonus.

2012 Salary Survey Analysis

2012 Salary Survey Results

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.