Simplified safety: fail-safe functionality for hazardous environments

Incorporating fail-safe functionality into intrinsically safe technology simplifies system setup and maintenance reducing control costs.


Installing fail-safe machine control systems in areas that have explosive atmospheres has been a problem because the products normally used in most machine-control equipment may cause sparks when disconnected. Any such sparks in an explosive atmosphere are dangerous to life, limb, and equipment.

The ultimate solution is to redesign the equipment to limit voltages and currents to levels where generation of sparks is impossible. That is, of course, good news for everyone, from the fire department in the surrounding community to the maintenance worker at the potential point of ignition. No disaster is a good disaster!

It sounds easy, but putting this concept into practice requires completely redesigning the control electronics from the semiconductors up. This makes the equipment intrinsically safe, meaning that explosion proofing is not an add-on. It’s not something like a shield that could be defeated or fail. It’s part of the equipment’s basic design.

In intrinsically safe equipment, all voltages and currents are limited to values that ensure that sparks cannot be generated. In addition, all electronics contain circuit elements, such as capacitors or MOVs in parallel with switch contacts to absorb kickback energy when interrupting currents in inductive circuits, and to bleed static charges that may build up anywhere within the equipment.

Limiting voltages and currents, of course, limits the energy available to form kickbacks to levels where the atmosphere itself is able to snuff sparks before they can appear. This is what is meant by “intrinsically safe.”

Intrinsically safe: No failure mode

The advantage of intrinsically safe control components is that there is no failure mode. You can’t get a spark because there is nothing there capable of making a spark. The probability of an explosion collapses to zero for all conditions.

Previously, engineers designing installations where explosive atmospheres could exist have had to set up a safe barrier to protect the dangerous area. While the term “safe barrier” calls to mind images of heavy concrete walls, it’s not like that at all.

Of course, there are walls around areas where explosive atmospheres gather. That’s what makes combustible gases, vapors or dust build up to explosive levels in the first place. Those walls, however, are the problem, not the solution.

The safe barrier solution is, instead, a set of electronic system components that reduce signals to safe, spark-free levels before they enter the hazardous area. Figure [safe barrier] illustrates the concept. Control-system components outside of the barrier all operate at standard voltage, current and power levels.

Incorporating fail-safe components into intrinsically safe control systems eliminates the need for safe barriers. That drastically reduces wiring, cabling, and engineering costs. The reason combining intrinsically safe technology with fail-safe technology is so important is that fail-safe devices, especially, can be located as close to the processes they control as possible. That means putting fail-safe devices within the hazardous atmosphere. That is impossible without including intrinsically safe technology as well.

Explosive atmosphere applications

Hazardous-atmosphere issues arise in many industries, such as chemical, petrochemical, oil and gas, even farming, where organic dust is famous for exploding with no warning. Wherever you have the manufacture, processing, transport or storage of combustible materials, you typically have creation or release of gases, vapors or mist into the environment. There are other processes that create combustible dust, such as grinding and milling, where you’re creating granular solids or dust.

Today, there are intrinsically safe fail-safe devices manufactured for use in explosive-atmosphere environments. These are the first generation of modular solutions for I/O in machine safety loops in hazardous areas, such as the modular distributed SIMATIC ET200 iSP, which is an I/O solution designed for installation in hazardous areas. The ET 200iSPO is programmed in a similar way to the standard SIMATIC PLC and distributed I/O modules with STEP 7 software over PROFIBUS. All these modules can be replaced during operation even under explosive conditions. If technicians need to replace something, they can just go pull out a module, and put a similar module in there, and continue with the operation thus reducing downtimes and further increasing productivity.

Overall, the benefits of combining intrinsically safe technology with machine safety include: no safe barriers required, reduced wiring, one cable carries both standard and safe communications, in-built HART communications, hot swapping, reconfiguration in run mode, integrated diagnostics. No barriers, less wiring, less cabling, less engineering translate directly into less installation and operation costs. Now, hazardous area application designs can be further simplified and made more efficient with the use of a fail-safe intrinsically safe control system solution.



John D’Silva is marketing manager for Safety Integrated solutions at Siemens Industry. Contact him at

For more information on safety automation related products, visit the Siemens Industry website at

This article was submitted for the Siemens Simplified Safety custom newsletter. See other articles in the Siemens Simplified Safety newsletter.


No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2013 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
A cool solution: Collaboration, chemistry leads to foundry coat product development; See the 2015 Product of the Year Finalists
Raising the standard: What's new with NFPA 70E; A global view of manufacturing; Maintenance data; Fit bearings properly
Sister act: Building on their father's legacy, a new generation moves Bales Metal Surface Solutions forward; Meet the 2015 Engineering Leaders Under 40
Cyber security cost-efficient for industrial control systems; Extracting full value from operational data; Managing cyber security risks
Drilling for Big Data: Managing the flow of information; Big data drilldown series: Challenge and opportunity; OT to IT: Creating a circle of improvement; Industry loses best workers, again
Pipeline vulnerabilities? Securing hydrocarbon transit; Predictive analytics hit the mainstream; Dirty pipelines decrease flow, production—pig your line; Ensuring pipeline physical and cyber security
Upgrading secondary control systems; Keeping enclosures conditioned; Diagnostics increase equipment uptime; Mechatronics simplifies machine design
Designing positive-energy buildings; Ensuring power quality; Complying with NFPA 110; Minimizing arc flash hazards
Building high availability into industrial computers; Of key metrics and myth busting; The truth about five common VFD myths

Annual Salary Survey

After almost a decade of uncertainty, the confidence of plant floor managers is soaring. Even with a number of challenges and while implementing new technologies, there is a renewed sense of optimism among plant managers about their business and their future.

The respondents to the 2014 Plant Engineering Salary Survey come from throughout the U.S. and serve a variety of industries, but they are uniform in their optimism about manufacturing. This year’s survey found 79% consider manufacturing a secure career. That’s up from 75% in 2013 and significantly higher than the 63% figure when Plant Engineering first started asking that question a decade ago.

Read more: 2014 Salary Survey: Confidence rises amid the challenges

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.