Servos versus induction motors: Look at performance, costs

Choosing between servos and induction motors depends on the level of performance required by the application and costs. Induction motors are simple, low-cost, and straightforward. Servos can offer higher performance, faster speeds, and smaller sizes.


An advanced feature of the Beckhoff AM8000 servomotor is “one cable-technology.” With this technology, the power and process data are transmitted in one standard motor cable instead of two cables. It has a low rotor moment of inertia, very high overload cThe decision to use servos versus induction motors ultimately depends on the level of performance required by the application and costs. The principal strengths of induction motors are that they are simple, low-cost, and represent a very mature technology. Induction motors are also comparatively affordable, straightforward in terms of on/off control, simple to wire, and offer a wide variety of product selection with many vendors able to deliver. In terms of drawbacks, these motors offer limited position control and are typically larger in size.

Higher performance, smaller size

Servos, on the other hand, are more dynamic motors that include a feedback device, such as an encoder or resolver, to control speed and position accuracy. The main strengths of servomotors include much higher performance, the ability to deliver higher speeds, smaller size, and a wide variety of supplementary components. Of course, servos are slightly higher in cost due to the more advanced technology in play. High speeds and torque performance can be limited occasionally by servo drive update time.

Typical squirrel-cage induction motors represent a low-cost choice for velocity control for applications, such as constant speed conveyors, sorters, or similar transmission systems that have reasonable constant loading.  Because induction motor torque is generated by percentage of slip, they tend to have a limited flat torque region based on speed when compared to servos.

Common three-phase induction motor applications include machine tools, cranes, pumps, fans, robot applications, and others. In such applications, a synchronous servomotor could be “overkill” relative to the costs involved. However, both solutions clearly have their place. Depending on the application, servos may still be required based on other performance criteria, such as repetitive robust indexing with repeatable positioning and/or higher velocity accuracy. Other instances of where servo positioning systems are necessary include applications that require a range of supply voltages (such as 115 V ac to 480 V ac).

Accuracy justifies cost

As requirements for accurate positioning, higher speeds, and robust indexing moves with limited dwell time become more critical, it’s easier to justify the additional cost for servos to achieve more accurate positioning control. Typical servomotor applications include higher performance machinery for packaging, metal forming, CNC, woodworking, robotics, and more.

Advanced servomotors available today feature a low rotor moment of inertia and a very high overload capacity. Salient pole-wound technology gives rise to a high copper space factor, which helps attain high continuous torques. Very small end turns result in a small overall length. Fully potted stator provides for a thermally ideal binding of the winding to the motor housing. Potting also mechanically protects winding wires against vibrations.

One-cable technology is another advanced feature where power and process data are transmitted in one standard motor cable instead of two cables. Encoder data, rotor position, multi-turn information, and the status of the thermal conditions in the motor are transmitted reliably and free from interference via a digital interface. The benefits here include significant cost savings, since plug connectors and cables are eliminated at the motor and the controller ends.

- Bob Swalley is motors and drives specialist, Beckhoff Automation. Edited by Mark T. Hoske, content manager, CFE Media, Control Engineering and Plant Engineering,  

No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2013 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
A cool solution: Collaboration, chemistry leads to foundry coat product development; See the 2015 Product of the Year Finalists
Raising the standard: What's new with NFPA 70E; A global view of manufacturing; Maintenance data; Fit bearings properly
Sister act: Building on their father's legacy, a new generation moves Bales Metal Surface Solutions forward; Meet the 2015 Engineering Leaders Under 40
Cyber security cost-efficient for industrial control systems; Extracting full value from operational data; Managing cyber security risks
Drilling for Big Data: Managing the flow of information; Big data drilldown series: Challenge and opportunity; OT to IT: Creating a circle of improvement; Industry loses best workers, again
Pipeline vulnerabilities? Securing hydrocarbon transit; Predictive analytics hit the mainstream; Dirty pipelines decrease flow, production—pig your line; Ensuring pipeline physical and cyber security
Upgrading secondary control systems; Keeping enclosures conditioned; Diagnostics increase equipment uptime; Mechatronics simplifies machine design
Designing positive-energy buildings; Ensuring power quality; Complying with NFPA 110; Minimizing arc flash hazards
Building high availability into industrial computers; Of key metrics and myth busting; The truth about five common VFD myths

Annual Salary Survey

After almost a decade of uncertainty, the confidence of plant floor managers is soaring. Even with a number of challenges and while implementing new technologies, there is a renewed sense of optimism among plant managers about their business and their future.

The respondents to the 2014 Plant Engineering Salary Survey come from throughout the U.S. and serve a variety of industries, but they are uniform in their optimism about manufacturing. This year’s survey found 79% consider manufacturing a secure career. That’s up from 75% in 2013 and significantly higher than the 63% figure when Plant Engineering first started asking that question a decade ago.

Read more: 2014 Salary Survey: Confidence rises amid the challenges

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.